3]]: EEED
This is information on a product in full production.
November 2012 Doc ID 6422 Rev 3 1/19
19
TS861, TS862, TS864
Rail-to-rail micropower BiCMOS comparators
Datasheet production data
Features
Ultra low current consumption (6 µA/comp.
at VCC =2.7V)
Rail-to-rail CMOS inputs
Push-pull outputs
Supply operation from 2.7 to 10 V
Low propagation delay
ESD protection (2 kV)
Latch-up immunity (class A)
Available in SOT23-5 micropackage, SO-8,
SO-14,TSSOP8, and TSSOP14 package
Applications
Battery powered systems such as alarms
Portable communication systems
Smoke/gas/fire detectors
Portable computers
Description
The TS86x device (single, dual and quad) is
a rail-to-rail comparator characterized for 2.7 to
10 V operation over -40 °C to +85 °C temperature
ranges. It exhibits an excellent speed-to-power
ratio, featuring a current consumption of 6 μA per
comparator and a response time of 500 ns
at 2.7 V for a 100 mV overdrive.
Due to its ultra low power consumption and its
availability in a tiny package, the TS86x
comparator family is perfectly suited to battery-
powered systems. The output stage is designed
with a push-pull structure allowing a direct
connection to the microcontroller without
additional pull-up resistors.
8
6
Vcc-
1
2
Non-inverting input 1 3
4
7
5
Inverting input 1 Output 2
Vcc+
+
-
+-
Non-inverting input 2
Output 1
Inverting input 2
8
6
Vcc-
1
2
Non-inverting input 1 3
4
7
5
Inverting input 1 Output 2
Vcc+
+
-+
-
+-
+-
Non-inverting input 2
Output 1
Inverting input 2
SOT23-5
SO-8, TSSOP8 (dual)
5
4
Output
Vcc-
1
2
Non-inverting input
Vcc+
3
+-
Inverting input
8
6
Vcc-
1
2
Non-inverting input 3
+
-
4
7
5
Inverting input
Output
Vcc+
NC
NC
NC 8
6
Vcc-
1
2
Non-inverting input 3
+
-+
-
4
7
5
Inverting input
Output
Vcc+
NC
NC
NC
14
12 Vcc-
1
2
Non-inverting input 3
3
4
13
11
Inverting input 3
Output 4
+
-
+
-
Non-inverting input 2
Output 2
Inverting input 4
10
8
9
Output 3
Vcc+
Inverting input 2
5
6
Non-inverting input 1
7
Inverting input 1
Output 1
+
-
+
-
Non-inverting input 4
14
12 Vcc-
1
2
Non-inverting input 3
3
4
13
11
Inverting input 3
Output 4
+
-+
-
+
-+
-
Non-inverting input 2
Output 2
Inverting input 4
10
8
9
Output 3
Vcc+
Inverting input 2
5
6
Non-inverting input 1
7
Inverting input 1
Output 1
+
-+
-
+
-+
-
Non-inverting input 4
SO-14, TSSOP14 (quad)
SO-8 (single)
www.st.com
Absolute maximum ratings and operating conditions TS861, TS862, TS864
2/19 Doc ID 6422 Rev 3
1 Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings
Symbol Parameter Value Unit
VCC Supply voltage(1)
1. All voltages values, except differential voltage are with respect to network terminal.
12 V
VID Differential input voltage(2)
2. Differential voltages are non-inverting input terminal with respect to the inverting input terminal.
±12 V
VIN Input voltage range(3)
3. The magnitude of input and output voltages must never exceed VCC +0.3 V.
-0.3 to 12.3 V
RTHJA
Thermal resistance junction-to-ambient(4)
SOT23-5
SO-8
SO-14
TSSOP8
TSSOP14
4. Short-circuits can cause excessive heating. These values are typical.
250
125
105
120
100
°C/W
RTHJC
Thermal resistance junction-to-case(4)
SOT23-5
SO-8
SO-14
TSSOP8
TSSOP14
81
40
31
37
32
°C/W
TSTG Storage temperature range -65 to +150 °C
TJMaximum junction temperature 150 °C
TLEAD Lead temperature (soldering, 10 sec.) 260 °C
ESD Human body model (HBM)(5)
Machine model (MM)(6)
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through
a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin
combinations while the other pins are floating.
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
2
200
kV
V
Latch-up immunity Class A
Table 2. Operating conditions
Symbol Parameter Value Unit
VCC Supply voltage 2.7 to 10 V
VICM Common mode input voltage range VCC- - 0.3 to VCC+ + 0.3 V
TOper Operating free air temperature range -40 to + 85 °C
TS861, TS862, TS864 Electrical characteristics
Doc ID 6422 Rev 3 3/19
2 Electrical characteristics
Table 3. Electrical characteristics at VCC = 2.7 V, Tamb = 25 °C
(unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
VIO
Input offset voltage
TS861/2/4
Tmin < T < Tmax
TS861/2/4A
Tmin < T < Tmax
3
3
15
18
7
10
mV
ΔVIO Input offset voltage drift 6 μV/°C
IIO
Input offset current(1)
Tmin < T < Tmax
1150
300 pA
IIB
Input bias current(1)
Tmin < T < Tmax
1300
600 pA
VOH
High level output voltage
ISOURCE = 2.5 mA
Tmin < T < Tmax
2.35
2.15
2.45 V
VOL
Low level output voltage
ISINK =2.5mA
Tmin < T < Tmax
0.2 0.35
0.45
V
AVD Large signal voltage gain(2) 240 dB
CMR Common mode rejection ratio
0 < VICM < 2.7 V 65 dB
SVR Supply voltage rejection ratio
0 < VCC < 10 V 80 dB
ICC
Supply current per comparator
No load, output low
No load, output high
6
8
12
14
μA
TPLH
Propagation delay from output low to output high
VICM = 1.35 V, f = 10 kHz, CL=50pF
Overdrive = 10 mV
Overdrive = 100 mV
1.5
0.6
µs
TPHL
Propagation delay from output high to output low
VICM = 1.35 V, f = 10 kHz, CL=50pF
Overdrive = 10 mV
Overdrive = 100 mV
1.5
0.5
µs
Electrical characteristics TS861, TS862, TS864
4/19 Doc ID 6422 Rev 3
Note: Limits are 100% production tested at 25 °C. Limits over temperature are guaranteed through
correlation and by design.
TF
Fall time
f=10kHz, C
L= 50 pF, overdrive = 100 mV 20 ns
TR
Rise time
f=10kHz, C
L= 50 pF, overdrive = 100 mV 20 ns
1. Maximum values including unavoidable inaccuracies of the industrial tests.
2. Design evaluation.
Table 3. Electrical characteristics at VCC = 2.7 V, Tamb = 25 °C
(unless otherwise specified) (continued)
Symbol Parameter Min. Typ. Max. Unit
TS861, TS862, TS864 Electrical characteristics
Doc ID 6422 Rev 3 5/19
Note: Limits are 100% production tested at 25 °C. Limits over temperature are guaranteed through
correlation and by design.
Table 4. Electrical characteristics at VCC = 5 V, Tamb = 25 °C
(unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
VIO
Input offset voltage
TS861/2/4
Tmin < T < Tmax
TS861/2/4A
Tmin < T < Tmax
3
3
15
18
7
10
mV
ΔVIO Input offset voltage drift 6 μV/°C
IIO
Input offset current(1)
Tmin < T < Tmax
1. Maximum values including unavoidable inaccuracies of the industrial test.
1 150
300 pA
IIB
Input bias current(1)
Tmin < T < Tmax
1 300
600 pA
VOH
High level output voltage
ISOURCE =5mA
Tmin < T < Tmax
4.6
4.45
4.8 V
VOL
Low level output voltage
ISINK =5mA
Tmin < T < Tmax
0.2 0.4
0.55
V
AVD Large signal voltage gain(2)
2. Design evaluation.
240 dB
CMR Common mode rejection ratio
0 < VICM < 5 V 70 dB
SVR Supply voltage rejection ratio
2.7 < VCC < 10 V 80 dB
ICC
Supply current per comparator
No load, output low
No load, output high
6
8
12
14
μA
TPLH
Propagation delay from output low to output high
VICM = 2.5 V, f = 10 kHz, CL=50pF
Overdrive = 10 mV
Overdrive = 100 mV
2
0.5
µs
TPHL Propagation delay from output high to output low
VICM = 2.5 V, f = 10 kHz, CL=50pF
Overdrive = 10 mV
Overdrive = 100 mV
2
0.4
µs
TFFall time
f=10kHz, C
L= 50 pF, overdrive = 100 mV 20 ns
TRRise time
f=10kHz, C
L= 50 pF, overdrive = 100 mV 20 ns
Electrical characteristics TS861, TS862, TS864
6/19 Doc ID 6422 Rev 3
Note: Limits are 100% production tested at 25 °C. Limits over temperature are guaranteed through
correlation and by design.
Table 5. Electrical characteristics at VCC = +10 V, Tamb = 25 °C
(unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
VIO
Input offset voltage (VICM = VCC / 2)
TS861/2/4
Tmin < T < Tmax
315
18
mV
ΔVIO Input offset voltage drift 6 μV/°C
IIO
Input offset current(1)
Tmin < T < Tmax
1. Maximum values including unavoidable inaccuracies of the industrial test.
1 150
300 pA
IIB
Input bias current(1)
Tmin < T < Tmax
1 300
600 pA
VOH
High level output voltage
ISOURCE =5mA
Tmin < T < Tmax
9.6
9.45
9.8 V
VOL
Low level output voltage
ISINK =5mA
Tmin < T < Tmax
0.2 0.4
0.55
V
AVD Large signal voltage gain(2)
2. Design evaluation.
240 dB
CMR Common mode rejection ratio
0 < VICM < 10 V 75 dB
SVR Supply voltage rejection ratio
2.7 < VCC < 10 V 80 dB
ICC
Supply current per comparator
No load, output low
No load, output high
7
10
14
16
μA
TPLH
Propagation delay from output low to output high
VICM =5V, f=10kHz, C
L=50pF
Overdrive = 10 mV
Overdrive = 100 mV
3
0.5
µs
TPHL
Propagation delay from output high to output low
VICM =5V, f=10kHz, C
L=50pF
Overdrive = 10 mV
Overdrive = 100 mV
2.6
0.4
µs
TF
Fall time
f = 10 kHz, CL= 50 pF, overdrive = 100 mV 20 ns
TR
Rise time
f = 10 kHz, CL= 50 pF, overdrive = 100 mV 20 ns
Inpm gum youage v‘o (mV) r:.25"c 7:.95'0 rnfi nu a5 m <5 20="" 25="" an="" common="" modevouage="" v‘w="" (v)="" cc="">
TS861, TS862, TS864 Electrical characteristics
Doc ID 6422 Rev 3 7/19
Figure 1. VIO vs. VICM at VCC = 2.7 V Figure 2. VIO vs. VICM and temperature
at VCC = 2.7 V
      


6## 6
4O#
)NPUTOFFSETVOLTAGE6)/ M6
#OMMONMODEVOLTAGE6)#- 6
Figure 3. VIO vs. VICM at VCC = 5 V Figure 4. VIO vs. VICM and temperature
at VCC =5V



6## 6
4O#
)NPUTOFFSETVOLTAGE6)/ M6
#OMMONMODEVOLTAGE6)#- 6



4O#
4 O#
4 O#
)NPUTOFFSETVOLTAGE6)/ M6
#OMMONMODEVOLTAGE6)#- 6
Figure 5. VIO vs. VICM at VCC = 10 V Figure 6. VIO vs. VICM and temperature
at VCC =10V



6
##  6
4  O#
)NPUTOFFSETVOLTAGE6)/ M6
#OMMONMODEVOLTAGE6)#- 6



4 O#
4O#
4 O#
)NPUTOFFSETVOLTAGE6)/ M6
#OMMONMODEVOLTAGE6)#- 6
Electrical characteristics TS861, TS862, TS864
8/19 Doc ID 6422 Rev 3
Figure 7. VIO vs. VCC at VICM = VCC/2 Figure 8. VIO vs. temperature at VCC = 5 V



6)#- 6
##
4O#
)NPUTOFFSETVOLTAGE6)/ M6
3UPPLYVOLTAGE6## 6
 

6)#- 6
6)#- 6
6)#- 6
)NPUTOFFSETVOLTAGE6)/ M6
4EMP ERATUREO#
Figure 9. Supply current (ICC) vs. supply
voltage (VCC) (VID = -1 V)
Figure 10. Supply current (ICC) vs. supply
voltage (VCC) (VID = +1 V)
   

/UTPUT LOW
6)$  6
3UPPLYCURRENTPEROPERATOR)## !
3UPPLY VOLT AGE 6
## 6
4 O#
4  O#
4 O#
       
/UTPUTHIGH
6)$   6
3UPPLY CURRENTPEROPERATOR )##!
3U PPLY VOLTAGE 6
##6 
4   O#
4   O#
4   O#
Figure 11. Supply current (ICC)
vs. temperature (VID = -1 V)
Figure 12. Supply current (ICC)
vs. temperature (VID = +1 V)


/UTPUT LOW
6)$  6
3 UPPLYCURRENTPEROPERATOR )##  !
4E MPERATURE#
6##  6
6##  6
6##  6
0VUQVUIJHI
7*% 7
4VQQMZDVSSFOUQFSPQFSBUPS*$$"
5FNQFSBUVSF P$
7$$ 7
7$$ 7
7$$ 7
Vovo Vovn Vovo Vovn
TS861, TS862, TS864 Electrical characteristics
Doc ID 6422 Rev 3 9/19
Figure 13. VOL vs. ISINK and temperature
at VCC =5V
Figure 14. VOH vs. ISOURCE and temperature
at VCC =5V
 
4 O#
4O#
6
##6
4 O#
6OLTAGEOUPUTLOW 6
/,6
#URRENTSINK)3).+ M!

4 O#
4 O#
6## 6
4
O#
6OLTAGEOUPUTHIGH  6
/( 6
#URRENTSOURCE)3/52#%M!
Figure 15. Propagation delay TPLH vs. VICM
with VOVD = 100 mV
Figure 16. Propagation delay TPHL vs. VICM
with VOVD =100mV









4 #
6/6 $ M6
#,/!$  P&
0ROPAGATIONDELAY 4
0,( S
#OMMONMODEVOLTAGE6
)#- 6
6
## 6
6
## 6
6
## 6






4#
6
/6$  M6
#,/!$ P&
0ROPAGATIONDELAY 4
0(, S
#OMMONMODEVOLTAGE 6
)#- 6
6
## 6
6
## 6
6
## 6
Figure 17. Propagation delay TPLH vs. VICM
with VOVD =10mV
Figure 18. Propagation delay TPHL vs. VICM
with VOVD =10mV

4 #
6/6$ M6
#,/!$ P&
0ROPAGATIONDELAY 4
0,( S
#OMMONMODEVOLTAGE6
)#- 6
6
## 6
6
## 6
6
## 6







4 #
6/6$ M6
#,/!$P&
0ROPAGATIONDELAY 4
0(, S
#OMMONMODEVOLTAGE 6
)#- 6
6
## 6
6
## 6
6
## 6
E]
Electrical characteristics TS861, TS862, TS864
10/19 Doc ID 6422 Rev 3
Figure 19. Propagation delay vs. VCC
with VOVD =10mV
Figure 20. Propagation delay vs. VCC
with VOVD =100mV

6/6$ M6
#,/!$P&
4
0(,
6
)#- 6
40,(
6)#- 6
##
0ROPAGATIONDELAY 4
0S
3UPPLYVOLTAGE6
## 6
4
0,(
6
)#- 6
4
0(,
6
)#- 6
##






6
/6$ M6
#,/!$ P&
4
0(,
6
)#-  6
40,(
6
)#- 6
##
0ROPAGATIONDELAY 4
0S
3UPPLYVOLTAGE6
## 6
4
0,(
6
)#- 6
40(,
6
)#-6
##
Figure 21. Propagation delay vs. overdrive
voltage at VCC =2.7V
Figure 22. Propagation delay vs. overdrive
voltage at VCC =5V
Figure 23. Propagation delay vs. overdrive voltage at VCC =10V
    









6
## 6
6
)#- 6
#,/!$ P&
0ROPAGATIONDELAY 4
0S
/VERDRIVEVOLTAGE6
/6 $ M6
4
0,(
4
0(,
    
6
##  6
6
)#- 6
#,/!$ P&
0ROPAGATIONDELAY 4
0S
/VERDRIVEVOLTAGE6
/6$ M6
40,(
40(,
    
6
## 6
6
)#- 6
#,/!$ P&
0ROPAGATIONDELAY 4
0S
/VERDRIVEVOLTAGE 6
/6$ M6
40,(
40(,
TS861, TS862, TS864 Package information
Doc ID 6422 Rev 3 11/19
3 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com. ECOPACK
is an ST trademark.
Package information TS861, TS862, TS864
12/19 Doc ID 6422 Rev 3
3.1 SOT23-5 package information
Figure 24. SOT23-5L package outline
Table 6. SOT23-5L package mechanical data
Symbol
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 0.90 1.20 1.45 0.035 0.047 0.057
A1 0.15 0.006
A2 0.90 1.05 1.30 0.035 0.041 0.051
B 0.35 0.40 0.50 0.013 0.015 0.019
C 0.09 0.15 0.20 0.003 0.006 0.008
D 2.80 2.90 3.00 0.110 0.114 0.118
D1 1.90 0.075
e 0.95 0.037
E 2.60 2.80 3.00 0.102 0.110 0.118
F 1.50 1.60 1.75 0.059 0.063 0.069
L 0.10 0.35 0.60 0.004 0.013 0.023
K0° 10°
D M 45' ‘_ M w mam ” A it 5m NC 9 PLAINE GAGE PLANE gfi \ L 7 E LI x El
TS861, TS862, TS864 Package information
Doc ID 6422 Rev 3 13/19
3.2 SO-8 package information
Figure 25. SO-8 package outline
Table 7. SO-8 package mechanical data
Symbol
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.75 0.069
A1 0.10 0.25 0.004 0.010
A2 1.25 0.049
b 0.28 0.48 0.011 0.019
c 0.17 0.23 0.007 0.010
D 4.80 4.90 5.00 0.189 0.193 0.197
E 5.80 6.00 6.20 0.228 0.236 0.244
E1 3.80 3.90 4.00 0.150 0.154 0.157
e 1.27 0.050
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
L1 1.04 0.040
k 0 8° 1°
ccc 0.10 0.004
SETH-IF PM GLGE PLLHE
Package information TS861, TS862, TS864
14/19 Doc ID 6422 Rev 3
3.3 SO-14 package information
Figure 26. SO-14 package outline
Table 8. SO-14 package mechanical data
Symbol
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.35 1.75 0.05 0.068
A1 0.10 0.25 0.004 0.009
A2 1.10 1.65 0.04 0.06
B 0.33 0.51 0.01 0.02
C 0.19 0.25 0.007 0.009
D 8.55 8.75 0.33 0.34
E 3.80 4.0 0.15 0.15
e 1.27 0.05
H 5.80 6.20 0.22 0.24
h 0.25 0.50 0.009 0.02
L 0.40 1.27 0.015 0.05
k8° (max.)
ddd 0.10 0.004
PIN V \DENT‘F‘CATION H H t E1 SEATING PLANE % 015 mm GAGE PLANE
TS861, TS862, TS864 Package information
Doc ID 6422 Rev 3 15/19
3.4 TSSOP8 package information
Figure 27. TSSOP8 package outline
Table 9. TSSOP8 package mechanical data
Symbol
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.20 0.047
A1 0.05 0.15 0.002 0.006
A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.008
D 2.90 3.00 3.10 0.114 0.118 0.122
E 6.20 6.40 6.60 0.244 0.252 0.260
E1 4.30 4.40 4.50 0.169 0.173 0.177
e 0.65 0.0256
k0° 8°0° 8°
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1 0.039
aaa 0.10 0.004
D E \ 1 | : J W, ‘2 A 1 T 37 ; I :i b M L Dm- ” 8 1 F \ \ PLANE 025 mm 1 GAGE PLANE W ,,,,,,,,, E \ FL 1 ‘ I D fin ‘ H ‘ u ‘ u ‘ PM \DENHHCAHON U U ‘ L1 m H i L ’ ‘ 7 e L1
Package information TS861, TS862, TS864
16/19 Doc ID 6422 Rev 3
3.5 TSSOP14 package information
Figure 28. TSSOP14 package outline
Table 10. TSSOP14 package mechanical data
Symbol
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.20 0.047
A1 0.05 0.15 0.002 0.004 0.006
A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.0089
D 4.90 5.00 5.10 0.193 0.197 0.201
E 6.20 6.40 6.60 0.244 0.252 0.260
E1 4.30 4.40 4.50 0.169 0.173 0.176
e 0.65 0.0256
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1.00 0.039
k0° 8°0° 8°
aaa 0.10 0.004
TS861, TS862, TS864 Ordering information
Doc ID 6422 Rev 3 17/19
4 Ordering information
Table 11. Order codes
Part number Temperature
range Package Packaging Marking
TS861ILT
TS861AILT
-40 °C, +85 °C
SOT-23 Tape and reel K501
K502
TS861ID
TS861IDT
SO-8
Tube
Tape and reel 861I
TS861AID
TS861AIDT
Tube
Tape and reel 861AI
TS862ID
TS862IDT
-40 °C, +85 °C
SO-8
Tube
Tape and reel 862I
TS862AID
TS862AIDT
Tube
Tape and reel 862AI
TS862IPT
TS862AIPT TSSOP8 Tape and reel 862I
862AI
TS864ID
TS864IDT
-40 °C, +85 °C
SO-14
Tube
Tape and reel 864I
TS864AID
TS864AIDT
Tube
Tape and reel 864AI
TS864IPT
TS864AIPT TSSOP14 Tape and reel 864I
864AI
Revision history TS861, TS862, TS864
18/19 Doc ID 6422 Rev 3
5 Revision history
Table 12. Document revision history
Date Revision Changes
01-Feb-2002 1 Initial release.
28-Apr-2009 2
Updated document format.
Removed power dissipation from Table 1: Absolute maximum
ratings.
Added Rthja and Rthjc values and ESD notes in Table 1.
Updated curves in Figure 1 to Figure 14.
Changed Figure 15, Figure 16, Figure 17 and Figure 18.
Added Figure 19, Figure 20, Figure 21, Figure 22 and Figure 23.
Removed DIP package information in Chapter 3 and Chapter 4.
Added ordering information in Table 11: Order codes.
06-Nov-2012 3
Updated titles of Figure 9 to Figure 12 (added conditions).
Removed TS861IYLT, TS861AIYLT, TS862IYDT, TS862AIYDT,
TS864IYDT, and TS864AIYDT order codes from Ta bl e 1 1 .
Minor corrections throughout document.
TS861, TS862, TS864
Doc ID 6422 Rev 3 19/19
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at an
y
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com