S-8424A Series Datasheet by ABLIC Inc.

O ABLIC ABLIC Inc.
S-8424A Series
www.ablic.com
BATTERY BACKUP SWITCHING IC
© ABLIC Inc., 2001-2019 Rev.4.0_00
1
The S-8424A Series is a CMOS IC designed for use in the switching circuits of primary and backup power supplies on
a single chip. It consists of two voltage regulators, three voltage detectors, a power supply switch and its controller, as
well as other functions.
In addition to the switching function between the primary and backup power supply, the S-8424A Series can provide
the micro controllers with three types of voltage detection output signals corresponding to the power supply voltage.
Moreover adopting a special sequence for switch control enables the effective use of the backup power supply,
making this IC ideal for configuring a backup system.
Features
Low power consumption
Normal operation: 15 μA Max. (VIN = 6 V)
Backup: 2.1 μA Max.
Voltage regulator
Output voltage tolerance : ±2 %
Output voltage: Independently selectable in 0.1 V steps in the range of 2.3 V to 5.4 V
Three built-in voltage detectors (CS, PREEND , RESET )
Detection voltage precision: ±2 %
Detection voltage: Selectable in 0.1 V steps in the range of 2.4 V to 5.3 V (CS voltage detector)
Selectable in 0.1 V steps in the range of 1.7 V to 3.4 V (PREEND , RESET
voltage detector)
Switching circuit for primary power supply and backup power supply configurable on one chip
Efficient use of backup power supply possible
Special sequence
Backup voltage is not output when the primary power supply voltage does not reach the initial voltage at which
the switch unit operates.
Lead-free, Sn 100%, halogen-free*1
*1. Refer to “ Product Name Structure” for details.
Package
8-Pin TSSOP
Applications
Video camera recorders
Still video cameras
Memory cards
SRAM backup equipment
IIIIIIIII
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
2
Product Name Structure
1. Product name
S-8424A xx FT - TB - x
IC direction in tape specification
Package code
FT: 8-Pin TSSOP
Serial code
Environmental code
U: Lead-free (Sn 100%), halogen-free
G: Lead-free (for details, please contact our sales representatives.)
2. Package
Package Name Drawing Code
Package Tape Reel
8-Pin TSSOP Environmental code = G FT008-A-P-SD FT008-E-C-SD FT008-E-R-SD
Environmental code = U FT008-A-P-SD FT008-E-C-SD FT008-E-R-S1
BATTERY BACKUP SWITCHING IC ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
3
3. Product name list
Part No.
Type
Package Output
Voltage
(V)
CS Voltage
(V)
RESET
Voltage
(V)
PREEND
Voltage
(V)
Switch Voltage
(V)
VRO V
OUT VDET1 +VDET1 VDET2 +VDET2 VDET3 +VDET3 V
SW1
S-8424AAAFT-TB-x 8-Pin TSSOP 3.000 3.000 3.300 3.401 2.200 2.312 2.600 2.748 +VDET1 × 0.85
S-8424AABFT-TB-x 8-Pin TSSOP 3.300 3.300 4.000 4.129 2.300 2.420 2.500 2.640 +VDET1 × 0.77
S-8424AACFT-TB-x 8-Pin TSSOP 3.200 3.200 3.300 3.401 2.400 2.528 2.600 2.748 +VDET1 × 0.85
S-8424AADFT-TB-x 8-Pin TSSOP 5.000 5.000 4.600 4.753 2.300 2.420 2.500 2.640 +VDET1 × 0.77
S-8424AAEFT-TB-x 8-Pin TSSOP 3.150 3.150 4.200 4.337 2.300 2.420 2.500 2.640 +VDET1 × 0.77
S-8424AAFFT-TB-x 8-Pin TSSOP 3.200 3.200 4.400 4.545 2.400 2.528 2.600 2.748 +VDET1 × 0.77
S-8424AAGFT-TB-x 8-Pin TSSOP 2.800 2.800 4.400 4.545 2.400 2.528 2.600 2.748 +VDET1 × 0.77
S-8424AAHFT-TB-x 8-Pin TSSOP 5.000 5.000 4.600 4.753 2.550 2.690 2.700 2.856 +VDET1 × 0.77
S-8424AAJFT-TB-x 8-Pin TSSOP 3.100 3.100 4.400 4.545 2.200 2.312 2.600 2.748 +VDET1 × 0.77
S-8424AAKFT-TB-x 8-Pin TSSOP 3.200 3.200 4.600 4.753 2.400 2.528 2.600 2.748 +VDET1 × 0.77
Caution Set the CS voltage so that the switch voltage (VSW1) is equal to or greater than the
RESET detection voltage (VDET2).
Remark 1. The selection range is as follows.
VRO, VOUT: 2.3 to 5.4 V (0.1 V steps)
VDET1: 2.4 to 5.3 V (0.1 V steps)
VDET2: 1.7 to 3.4 V (0.1 V steps )
VDET3: 1.7 to 3.4 V (0.1 V steps)
VSW1: +VDET1 × 0.85 or +VDET1 × 0.77
2. Please contact our sales representatives for products other than the above.
3. x: G or U
4. Please select products of environmental code = U for Sn 100%, halogen-free products.
VIN PREEND CS ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
4
Block Diagram
VBAT
V
SW2
Detector
M1
CS
Voltage
detector
V
SW1
Detector
Switch
controller
VOUT
RESET
RESET
Voltage
detector
CS
VIN REG2
REG1 VRO
PREEND
PREEND
Voltage
detector
VSS
Figure 1 Block Diagram
BATTERY BACKUP SWITCHING IC HHHH ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
5
Pin Configuration
1. 8-Pin TSSOP
Table 1
7
6
5
8
2
3
4
1
Top view
Pin No. Symbol Description
1 VSS Ground
2
PREEND Output pin of PREEND voltage detector
3 VBAT*1 Backup power supply input pin
4 CS Output pin of CS voltage detector
5 RESET Output pin of RESET voltage detector
6 VOUT*2 Output pin of voltage regulator 2
Figure 2 7 VIN*3 Primary power supply input pin
8 VRO
*4 Output pin of voltage regulator 1
*
1 to *4. Mount capacitors between VSS (GND pin) and the VIN, VBAT,
VOUT, and VRO pins. (Refer to the “Standard Circuit”)
0 0 0 0 3 2 $25 an cozmafimfi 530m 100 25:: an cozmafimfi 530m ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
6
Absolute Maximum Ratings
Table 2
(Unless otherwise specified: Ta = 25°C)
Parameter Symbol Ratings Unit
Primary power supply input voltage VIN VSS0.3 to VSS+18 V
Backup power supply input voltage VBAT
Output voltage of voltage regulator VRO, VOUT VSS0.3 to VIN+0.3
CS output voltage VCS VSS0.3 to VSS+18
RESET output voltage RESETV
PREEND output voltage PREENDV
Power dissipation PD 300 (When not mounted on board) mW
700*1
Operating ambient temperature Topr 40 to +85 °C
Storage temperature Tstg 40 to +125
*1. When mounted on board
[Mounted board]
(1) Board size: 114.3 mm × 76.2 mm × t1.6 mm
(2) Board name: JEDEC STANDARD51-7
Caution The absolute maximum ratings are rated values exceeding which the product could suffer
physical damage. These values must therefore not be exceeded under any conditions.
(1) When mounted on board (2) When not mounted on board
050 100 150
600
400
200
0
Power Dissipation P
D
(mW)
Ambient Temperature Ta (°C)
500
300
100
700
800
050 100 150
300
200
100
0
Power Dissipation P
D
(mW)
Ambient Temperature Ta (°C)
400
Figure 3 Power Dissipation of Package
BATTERY BACKUP SWITCHING IC ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
7
Electrical Characteristics
1. S-8424AAAxx
Table 3 Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Parameter Symbol Conditions Min. Typ. Max. Unit Test
Circuit
Output voltage 1 VRO V
IN = 7.2 V, IRO = 3 mA 2.940 3.000 3.060 V 1
Dropout voltage 1 Vdrop1 VIN = 7.2 V, IRO = 3 mA 41 59 mV
Load stability 1 ΔVRO1 VIN = 7.2 V, IRO = 0.1 to 10 mA 50 100 mV
Input stability 1 ΔVRO2 VIN = 4 to 16 V, IRO = 3 mA 5 20 mV
Output voltage temperature coefficient 1 RO
RO
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Output voltage 2 VOUT VIN = 7.2 V, IOUT = 23 mA 2.940 3.000 3.060 V
Dropout voltage 2 Vdrop2 VIN = 7.2 V, IOUT = 23 mA 187 252 mV
Load stability 2 ΔVOUT1 VIN = 7.2 V, IOUT = 0.1 to 60 mA 50 100 mV
Input stability 2 ΔVOUT2 VIN = 4 to 16 V, IOUT = 23 mA 5 20 mV
Output voltage temperature coefficient 2 OUT
OUT
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Primary power input voltage VIN 16 V
CS detection voltage VDET1 VIN voltage detection 3.234 3.300 3.366 V 2
CS release voltage +VDET1 3.319 3.401 3.482 V
RESET detection voltage VDET2 VOUT voltage detection 2.156 2.200 2.244 V
RESET release voltage +VDET2 2.256 2.312 2.367 V
PREEND detection voltage VDET3 V
BAT voltage detection 2.548 2.600 2.652 V
PREEND release voltage +VDET3 2.682 2.748 2.814 V
Operating voltage Vopr VIN or VBAT 1.7 16 V
Detection voltage temperature coefficient 1DET
1DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
2DET
2DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
3DET
3DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Sink current ISINK V
DS = 0.5 V, VIN = VBAT = 2.0 V RESET 1.50 2.30 mA 3
PREEND 1.50 2.30 mA
CS 1.50 2.30 mA
Leakage current ILEAK VDS = 16 V, VIN = 16 V 0.1 μA
Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection +VDET1
× 0.83
+VDET1
× 0.85
+VDET1
× 0.87 V 4
CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VOUT
× 0.93
VOUT
× 0.95
VOUT
× 0.97 V 5
V
BAT switch leakage current ILEAK VIN = 3.6 V, VBAT = 0 V 0.1 μA 6
V
BAT switch resistance RSW VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA 30 60 Ω 7
Switch voltage temperature coefficient 1SW
1SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 4
CS output inhibit voltage temperature
coefficient 2SW
2SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 5
Current consumption ISS1 VIN = 3.6 V, VBAT = 3.0 V, Unload 7 15 μA 8
I
BAT1 0.26 0.50 μA
IBAT2 VIN = Open, VBAT = 3.0 V, Unload Ta = 25°C 1.0 2.1 μA
Ta = 85°C 3.5 μA
Backup power supply input voltage VBAT 1.7 4.0 V 7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit”section.
Voltage regulator
Voltage detector
Switch unit
Total
ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
8
2. S-8424AABxx
Table 4 Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Parameter Symbol Conditions Min. Typ. Max. Unit Test
Circuit
Output voltage 1 VRO V
IN = 6 V, IRO = 30 mA 3.234 3.300 3.366 V 1
Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 30 mA 356 474 mV
Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 40 mA 50 100 mV
Input stability 1 ΔVRO2 VIN = 6 to 16 V, IRO = 30 mA 5 20 mV
Output voltage temperature coefficient 1 RO
RO
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 3.234 3.300 3.366 V
Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV
Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA 50 100 mV
Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV
Output voltage temperature coefficient 2 OUT
OUT
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Primary power input voltage VIN 16 V
CS detection voltage VDET1 VIN voltage detection 3.920 4.000 4.080 V 2
CS release voltage +VDET1 4.030 4.129 4.228 V
RESET detection voltage VDET2 VOUT voltage detection 2.254 2.300 2.346 V
RESET release voltage +VDET2 2.362 2.420 2.478 V
PREEND detection voltage VDET3 V
BAT voltage detection 2.450 2.500 2.550 V
PREEND release voltage +VDET3 2.576 2.640 2.703 V
Operating voltage Vopr VIN or VBAT 1.7 16 V
Detection voltage temperature coefficient 1DET
1DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
2DET
2DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
3DET
3DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Sink current ISINK V
DS = 0.5 V, VIN = VBAT = 2.0 V RESET 1.50 2.30 mA 3
PREEND 1.50 2.30 mA
CS 1.50 2.30 mA
Leakage current ILEAK VDS = 16 V, VIN = 16 V 0.1 μA
Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection +VDET1
× 0.75
+VDET1
× 0.77
+VDET1
× 0.79 V 4
CS output inhibit voltage VSW2
VBAT = 3.0 V
VOUT voltage detection
VOUT
× 0.93
VOUT
× 0.95
VOUT
× 0.97 V 5
V
BAT switch leakage current ILEAK VIN = 6V, VBAT = 0 V 0.1 μA 6
V
BAT switch resistance RSW VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA 30 60 Ω 7
Switch voltage temperature coefficient 1SW
1SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 4
CS output inhibit voltage temperature
coefficient 2SW
2SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 5
Current consumption ISS1 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 μA 8
I
BAT1 0.26 0.50 μA
IBAT2 VIN = Open, VBAT = 3.0 V, Unload Ta = 25°C 1.0 2.1 μA
Ta = 85°C 3.5 μA
Backup power supply input voltage VBAT 1.7 4.0 V 7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
Voltage regulator
Voltage detector
Switch unit
Total
BATTERY BACKUP SWITCHING IC ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
9
3. S-8424AACxx
Table 5 Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Parameter Symbol Conditions Min. Typ. Max. Unit Test
Circuit
Output voltage 1 VRO V
IN = 3.6 V, IRO = 15 mA 3.136 3.200 3.264 V 1
Dropout voltage 1 Vdrop1 VIN = 3.6 V, IRO = 15 mA 181 243 mV
Load stability 1 ΔVRO1 VIN = 3.6 V, IRO = 0.1 to 20 mA 50 100 mV
Input stability 1 ΔVRO2 VIN = 3.6 to 16 V, IRO = 15 mA 5 20 mV
Output voltage temperature coefficient 1 RO
RO
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Output voltage 2 VOUT VIN = 3.6 V, IOUT = 15mA 3.136 3.200 3.264 V
Dropout voltage 2 Vdrop2 VIN = 3.6 V, IOUT = 15 mA 123 167 mV
Load stability 2 ΔVOUT1 VIN = 3.6 V, IOUT = 0.1 to 20 mA 50 100 mV
Input stability 2 ΔVOUT2 VIN = 3.6 to 16 V, IOUT = 15 mA 5 20 mV
Output voltage temperature coefficient 2 OUT
OUT
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Primary power input voltage VIN 16 V
CS detection voltage VDET1 VIN voltage detection 3.234 3.300 3.366 V 2
CS release voltage +VDET1 3.319 3.401 3.482 V
RESET detection voltage VDET2 VOUT voltage detection 2.352 2.400 2.448 V
RESET release voltage +VDET2 2.467 2.528 2.589 V
PREEND detection voltage VDET3 V
BAT voltage detection 2.548 2.600 2.652 V
PREEND release voltage +VDET3 2.682 2.748 2.814 V
Operating voltage Vopr VIN or VBAT 1.7 16 V
Detection voltage temperature coefficient 1DET
1DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
2DET
2DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
3DET
3DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Sink current ISINK V
DS = 0.5 V, VIN = VBAT = 2.0 V RESET 1.50 2.30 mA 3
PREEND 1.50 2.30 mA
CS 1.50 2.30 mA
Leakage current ILEAK VDS = 16 V, VIN = 16 V 0.1 μA
Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection +VDET1
× 0.83
+VDET1
× 0.85
+VDET1
× 0.87
V 4
CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VOUT
× 0.93
VOUT
× 0.95
VOUT
× 0.97
V 5
V
BAT switch leakage current ILEAK VIN = 3.6 V, VBAT = 0 V 0.1 μA 6
V
BAT switch resistance RSW VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA 30 60 Ω 7
Switch voltage temperature coefficient 1SW
1SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 4
CS output inhibit voltage temperature
coefficient 2SW
2SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 5
Current consumption ISS1 VIN = 3.6 V, VBAT = 3.0 V, Unload 7 15 μA 8
I
BAT1 0.26 0.50 μA
IBAT2 VIN = Open, VBAT = 3.0 V, Unload Ta = 25°C 1.0 2.1 μA
Ta = 85°C 3.5 μA
Backup power supply input voltage VBAT 1.7 4.0 V 7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
Voltage regulator
Voltage detector Switch unit
Total
ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
10
4. S-8424AADxx
Table 6 Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Parameter Symbol Conditions Min. Typ. Max. Unit Test
Circuit
Output voltage 1 VRO V
IN = 6 V, IRO = 30 mA 4.900 5.000 5.100 V 1
Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 30 mA 356 474 mV
Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 40 mA 50 100 mV
Input stability 1 ΔVRO2 VIN = 6 to 16 V, IRO = 30 mA 5 20 mV
Output voltage temperature coefficient 1 RO
RO
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 4.900 5.000 5.100 V
Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV
Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA 50 100 mV
Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV
Output voltage temperature coefficient 2 OUT
OUT
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Primary power input voltage VIN 16 V
CS detection voltage VDET1 VIN voltage detection 4.508 4.600 4.692 V 2
CS release voltage +VDET1 4.639 4.753 4.867 V
RESET detection voltage VDET2 VOUT voltage detection 2.254 2.300 2.346 V
RESET release voltage +VDET2 2.362 2.420 2.478 V
PREEND detection voltage VDET3 V
BAT voltage detection 2.450 2.500 2.550 V
PREEND release voltage +VDET3 2.576 2.640 2.703 V
Operating voltage Vopr VIN or VBAT 1.7 16 V
Detection voltage temperature coefficient 1DET
1DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
2DET
2DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
3DET
3DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Sink current ISINK V
DS = 0.5 V, VIN = VBAT = 2.0 V RESET 1.50 2.30 mA 3
PREEND 1.50 2.30 mA
CS 1.50 2.30 mA
Leakage current ILEAK VDS = 16 V, VIN = 16 V 0.1 μA
Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection +VDET1
× 0.75
+VDET1
× 0.77
+VDET1
× 0.79 V 4
CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VOUT
× 0.93
VOUT
× 0.95
VOUT
× 0.97 V 5
V
BAT switch leakage current ILEAK VIN = 6 V, VBAT = 0 V 0.1 μA 6
V
BAT switch resistance RSW VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA 30 60 Ω 7
Switch voltage temperature coefficient 1SW
1SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 4
CS output inhibit voltage temperature
coefficient 2SW
2SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 5
Current consumption ISS1 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 μA 8
I
BAT1 0.26 0.50 μA
IBAT2 VIN = Open, VBAT = 3.0 V, Unload Ta = 25°C 1.0 2.1 μA
Ta = 85°C 3.5 μA
Backup power supply input voltage VBAT 1.7 4.0 V 7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
Voltage regulator Voltage detector
Switch unit
Total
BATTERY BACKUP SWITCHING IC ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
11
5. S-8424AAExx
Table 7 Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Parameter Symbol Conditions Min. Typ. Max. Unit Test
Circuit
Output voltage 1 VRO V
IN = 6 V, IRO = 30 mA 3.087 3.150 3.213 V 1
Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 30 mA 356 474 mV
Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 30 mA 50 100 mV
Input stability 1 ΔVRO2 VIN = 6 to 16 V, IRO = 30 mA 5 20 mV
Output voltage temperature coefficient 1 RO
RO
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 3.087 3.150 3.213 V
Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV
Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA 50 100 mV
Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV
Output voltage temperature coefficient 2 OUT
OUT
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Primary power input voltage VIN 16 V
CS detection voltage VDET1 VIN voltage detection 4.116 4.200 4.284 V 2
CS release voltage +VDET1 4.233 4.337 4.441 V
RESET detection voltage VDET2 VOUT voltage detection 2.254 2.300 2.346 V
RESET release voltage +VDET2 2.362 2.420 2.478 V
PREEND detection voltage VDET3 V
BAT voltage detection 2.450 2.500 2.550 V
PREEND release voltage +VDET3 2.576 2.640 2.703 V
Operating voltage Vopr VIN or VBAT 1.7 16 V
Detection voltage temperature coefficient 1DET
1DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
2DET
2DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
3DET
3DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Sink current ISINK V
DS = 0.5 V, VIN = VBAT = 2.0 V RESET 1.50 2.30 mA 3
PREEND 1.50 2.30 mA
CS 1.50 2.30 mA
Leakage current ILEAK VDS = 16 V, VIN = 16 V 0.1 μA
Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection +VDET1
× 0.75
+VDET1
× 0.77
+VDET1
× 0.79 V 4
CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VOUT
× 0.93
VOUT
× 0.95
VOUT
× 0.97 V 5
V
BAT switch leakage current ILEAK VIN = 6 V, VBAT = 0 V 0.1 μA 6
V
BAT switch resistance RSW VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA 30 60 Ω 7
Switch voltage temperature coefficient 1SW
1SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 4
CS output inhibit voltage temperature
coefficient 2SW
2SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 5
Current consumption ISS1 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 μA 8
I
BAT1 0.26 0.50 μA
IBAT2 VIN = Open, VBAT = 3.0 V, Unload Ta = 25°C 1.0 2.1 μA
Ta = 85°C 3.5 μA
Backup power supply input voltage VBAT 1.7 4.0 V 7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
Voltage regulator Voltage detector
Switch unit
Total
ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
12
6. S-8424AAFxx
Table 8 Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Parameter Symbol Conditions Min. Typ. Max. Unit Test
Circuit
Output voltage 1 VRO V
IN = 6 V, IRO = 30 mA 3.136 3.200 3.264 V 1
Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 30 mA 356 474 mV
Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 30 mA 50 100 mV
Input stability 1 ΔVRO2 VIN = 6 to 16 V, IRO = 30 mA 5 20 mV
Output voltage temperature coefficient 1 RO
RO
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 3.136 3.200 3.264 V
Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV
Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 50 mA 50 100 mV
Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV
Output voltage temperature coefficient 2 OUT
OUT
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Primary power input voltage VIN 16 V
CS detection voltage VDET1 VIN voltage detection 4.312 4.400 4.488 V 2
CS release voltage +VDET1 4.436 4.545 4.654 V
RESET detection voltage VDET2 VOUT voltage detection 2.352 2.400 2.448 V
RESET release voltage +VDET2 2.467 2.528 2.589 V
PREEND detection voltage VDET3 V
BAT voltage detection 2.548 2.600 2.652 V
PREEND release voltage +VDET3 2.682 2.748 2.814 V
Operating voltage Vopr VIN or VBAT 1.7 16 V
Detection voltage temperature coefficient 1DET
1DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
2DET
2DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
3DET
3DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Sink current ISINK VDS = 0.5 V, VIN = VBAT = 2.0 V RESET 1.50 2.30 mA 3
PREEND 1.50 2.30 mA
CS 1.50 2.30 mA
Leakage current ILEAK VDS = 16 V, VIN = 16 V 0.1 μA
Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection +VDET1
× 0.75
+VDET1
× 0.77
+VDET1
× 0.79 V 4
CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VOUT
× 0.93
VOUT
× 0.95
VOUT
× 0.97 V 5
V
BAT switch leakage current ILEAK VIN = 6 V, VBAT = 0 V 0.1 μA 6
V
BAT switch resistance RSW VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA 30 60 Ω 7
Switch voltage temperature coefficient 1SW
1SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 4
CS output inhibit voltage temperature
coefficient 2SW
2SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 5
Current consumption ISS1 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 μA 8
I
BAT1 0.26 0.50 μA
I
BAT2 V
IN = Open, VBAT = 3.0 V, Unload Ta = 25°C 1.0 2.1 μA
Ta = 85°C 3.5 μA
Backup power supply input voltage VBAT 1.7 4.0 V 7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
Voltage regulator
Voltage detector
Switch unit
Total
BATTERY BACKUP SWITCHING IC ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
13
7. S-8424AAGxx
Table 9 Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Parameter Symbol Conditions Min. Typ. Max. Unit Test
Circuit
Output voltage 1 VRO V
IN = 6 V, IRO = 30 mA 2.744 2.800 2.856 V 1
Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 30 mA 356 474 mV
Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 30 mA 50 100 mV
Input stability 1 ΔVRO2 VIN = 6 to 16 V, IRO = 30 mA 5 20 mV
Output voltage temperature coefficient 1 RO
RO
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 2.744 2.800 2.856 V
Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV
Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 50 mA 50 100 mV
Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV
Output voltage temperature coefficient 2 OUT
OUT
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Primary power input voltage VIN 16 V
CS detection voltage VDET1 VIN voltage detection 4.312 4.400 4.488 V 2
CS release voltage +VDET1 4.436 4.545 4.654 V
detection voltage VDET2 VOUT voltage detection 2.352 2.400 2.448 V
RESET release voltage +VDET2 2.467 2.528 2.589 V
PREEND detection voltage VDET3 V
BAT voltage detection 2.548 2.600 2.652 V
PREEND release voltage +VDET3 2.682 2.748 2.814 V
Operating voltage Vopr VIN or VBAT 1.7 16 V
Detection voltage temperature coefficient 1DET
1DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
2DET
2DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
3DET
3DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Sink current ISINK VDS = 0.5 V, VIN = VBAT = 2.0 V RESET 1.50 2.30 mA 3
PREEND 1.50 2.30 mA
CS 1.50 2.30 mA
Leakage current ILEAK VDS = 16 V, VIN = 16 V 0.1 μA
Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection +VDET1
× 0.75
+VDET1
× 0.77
+VDET1
× 0.79 V 4
CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VOUT
× 0.93
VOUT
× 0.95
VOUT
× 0.97 V 5
V
BAT switch leakage current ILEAK VIN = 6 V, VBAT = 0 V 0.1 μA 6
V
BAT switch resistance RSW VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA 30 60 Ω 7
Switch voltage temperature coefficient 1SW
1SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 4
CS output inhibit voltage temperature
coefficient 2SW
2SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 5
Current consumption ISS1 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 μA 8
I
BAT1 0.26 0.50 μA
I
BAT2 V
IN = Open, VBAT = 3.0 V, Unload Ta = 25°C 1.0 2.1 μA
Ta = 85°C 3.5 μA
Backup power supply input voltage VBAT 1.7 4.0 V 7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
Voltage regulator
Voltage detector
Switch unit
Total
ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
14
8. S-8424AAHxx
Table 10 Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Parameter Symbol Conditions Min. Typ. Max. Unit Test
Circuit
Output voltage 1 VRO V
IN = 6 V, IRO = 30 mA 4.900 5.000 5.100 V 1
Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 30 mA 356 474 mV
Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 40 mA 50 100 mV
Input stability 1 ΔVRO2 VIN = 6 to 16 V, IRO = 30 mA 5 20 mV
Output voltage temperature coefficient 1 RO
RO
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 4.900 5.000 5.100 V
Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV
Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA 50 100 mV
Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV
Output voltage temperature coefficient 2 OUT
OUT
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Primary power input voltage VIN 16 V
CS detection voltage VDET1 VIN voltage detection 4.508 4.600 4.692 V 2
CS release voltage +VDET1 4.639 4.753 4.867 V
detection voltage VDET2 VOUT voltage detection 2.499 2.550 2.601 V
RESET release voltage +VDET2 2.625 2.690 2.754 V
PREEND detection voltage VDET3 V
BAT voltage detection 2.646 2.700 2.754 V
PREEND release voltage +VDET3 2.787 2.856 2.924 V
Operating voltage Vopr VIN or VBAT 1.7 16 V
Detection voltage temperature coefficient 1DET
1DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
2DET
2DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
3DET
3DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Sink current ISINK VDS = 0.5 V, VIN = VBAT = 2.0 V RESET 1.50 2.30 mA 3
PREEND 1.50 2.30 mA
CS 1.50 2.30 mA
Leakage current ILEAK VDS = 16 V, VIN = 16 V 0.1 μA
Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection +VDET1
× 0.75
+VDET1
× 0.77
+VDET1
× 0.79 V 4
CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VOUT
× 0.93
VOUT
× 0.95
VOUT
× 0.97 V 5
V
BAT switch leakage current ILEAK VIN = 6 V, VBAT = 0 V 0.1 μA 6
V
BAT switch resistance RSW VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA 30 60 Ω 7
Switch voltage temperature coefficient 1SW
1SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 4
CS output inhibit voltage temperature
coefficient 2SW
2SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 5
Current consumption ISS1 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 μA 8
I
BAT1 0.26 0.50 μA
I
BAT2 V
IN = Open, VBAT = 3.0 V, Unload Ta = 25°C 1.0 2.1 μA
Ta = 85°C 3.5 μA
Backup power supply input voltage VBAT 1.7 4.0 V 7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
Voltage regulator
Voltage detector
Switch unit
Total
BATTERY BACKUP SWITCHING IC ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
15
9. S-8424AAJFxx
Table 11 Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Parameter Symbol Conditions Min. Typ. Max. Unit Test
Circuit
Output voltage 1 VRO V
IN = 6 V, IRO = 10 mA 3.038 3.100 3.162 V 1
Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 10 mA 123 167 mV
Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 15 mA 50 100 mV
Input stability 1 ΔVRO2 VIN = 6 to 16 V, IRO = 10 mA 5 20 mV
Output voltage temperature coefficient 1 RO
RO
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 3.038 3.100 3.162 V
Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV
Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA 50 100 mV
Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV
Output voltage temperature coefficient 2 OUT
OUT
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Primary power input voltage VIN 16 V
CS detection voltage VDET1 VIN voltage detection 4.312 4.400 4.488 V 2
CS release voltage +VDET1 4.436 4.545 4.654 V
RESET detection voltage VDET2 VOUT voltage detection 2.156 2.200 2.244 V
RESET release voltage +VDET2 2.256 2.312 2.367 V
PREEND detection voltage VDET3 V
BAT voltage detection 2.548 2.600 2.652 V
PREEND release voltage +VDET3 2.682 2.748 2.814 V
Operating voltage Vopr VIN or VBAT 1.7 16 V
Detection voltage temperature coefficient 1DET
1DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
2DET
2DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
3DET
3DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Sink current ISINK V
DS = 0.5 V, VIN = VBAT = 2.0 V RESET 1.50 2.30 mA 3
PREEND 1.50 2.30 mA
CS 1.50 2.30 mA
Leakage current ILEAK VDS = 16 V, VIN = 16 V 0.1 μA
Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection +VDET1
× 0.75
+VDET1
× 0.77
+VDET1
× 0.79 V 4
CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VOUT
× 0.93
VOUT
× 0.95
VOUT
× 0.97 V 5
V
BAT switch leakage current ILEAK VIN = 6 V, VBAT = 0 V 0.1 μA 6
V
BAT switch resistance RSW VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA 30 60 Ω 7
Switch voltage temperature coefficient 1SW
1SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 4
CS output inhibit voltage temperature
coefficient 2SW
2SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 5
Current consumption ISS1 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 μA 8
I
BAT1 0.26 0.50 μA
I
BAT2 V
IN = Open, VBAT = 3.0 V, Unload Ta = 25°C 1.0 2.1 μA
Ta = 85°C 3.5 μA
Backup power supply input voltage VBAT 1.7 4.0 V 7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
Voltage regulator
Voltage detector
Switch unit
Total
ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
16
10. S-8424AAKxx
Table 12 Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Parameter Symbol Conditions Min. Typ. Max. Unit Test
Circuit
Output voltage 1 VRO V
IN = 6 V, IRO = 10 mA 3.136 3.200 3.264 V 1
Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 10 mA 123 167 mV
Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 15 mA 50 100 mV
Input stability 1 ΔVRO2 VIN = 6 to 16 V, IRO = 10 mA 5 20 mV
Output voltage temperature coefficient 1 RO
RO
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 3.136 3.200 3.264 V
Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV
Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA 50 100 mV
Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV
Output voltage temperature coefficient 2 OUT
OUT
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Primary power input voltage VIN 16 V
CS detection voltage VDET1 VIN voltage detection 4.508 4.600 4.692 V 2
CS release voltage +VDET1 4.639 4.753 4.867 V
RESET detection voltage VDET2 VOUT voltage detection 2.352 2.400 2.448 V
RESET release voltage +VDET2 2.467 2.528 2.589 V
PREEND detection voltage VDET3 V
BAT voltage detection 2.548 2.600 2.652 V
PREEND release voltage +VDET3 2.682 2.748 2.814 V
Operating voltage Vopr VIN or VBAT 1.7 16 V
Detection voltage temperature coefficient 1DET
1DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
2DET
2DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
3DET
3DET
VTa
V
Δ
Δ Ta = 40°C to +85°C ±100 ppm/°C
Sink current ISINK V
DS = 0.5 V, VIN = VBAT = 2.0 V RESET 1.50 2.30 mA 3
PREEND 1.50 2.30 mA
CS 1.50 2.30 mA
Leakage current ILEAK VDS = 16 V, VIN = 16 V 0.1 μA
Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection +VDET1
× 0.75
+VDET1
× 0.77
+VDET1
× 0.79 V 4
CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VOUT
× 0.93
VOUT
× 0.95
VOUT
× 0.97 V 5
V
BAT switch leakage current ILEAK VIN = 6 V, VBAT = 0 V 0.1 μA 6
V
BAT switch resistance RSW VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA 30 60 Ω 7
Switch voltage temperature coefficient 1SW
1SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 4
CS output inhibit voltage temperature
coefficient 2SW
2SW
VTaΔ
VΔ
Ta = 40°C to +85°C ±100 ppm/°C 5
Current consumption ISS1 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 μA 8
I
BAT1 0.26 0.50 μA
I
BAT2 V
IN = Open, VBAT = 3.0 V, Unload Ta = 25°C 1.0 2.1 μA
Ta = 85°C 3.5 μA
Backup power supply input voltage VBAT 1.7 4.0 V 7
Remark The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
Voltage regulator
Voltage detector
Switch unit
Total
BATTERY BACKUP SWITCHING IC ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
17
Test Circuits
1. 2.
V
10 μF
VRO or VOUT
VIN
VIN
VSS
VSS
RESET
VIN
VBAT
V
VOUT
V V
CS
100 kΩ
VIN
100 kΩ
PREEND
100 kΩ
V
VBAT
V
To measure VDET3, apply 6 V to VIN.
3. 4.
VDS
VIN
VIN
VSS
CS
RESET
A
A
VBAT VOUT
PREEND
A
VBAT
VIN
VOUT
VIN
VSS
VBAT
V
V
Measure the value after applying 6 V to VIN.
5. 6.
VOUT
VIN
VSS CS
F.G
.
VBAT
VBAT Oscilloscope
Oscilloscope
100 kΩ
VSS
A
VIN
VIN
VBAT
7. 8.
IOUT
VBAT
VOUT
VIN
VSS
VBAT
V
VIN
Leave open and measure the value after applying
6 V to VIN.
VBAT
VIN
VIN
VSS
VBAT
A
A
IBAT
ISS
To measure IBAT2, apply 6 V to VIN and then leave
VIN open and measure IBAT.
Figure 4 Test Circuits
IIIIIIIII
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
18
Operation Timing Chart
VIN (V)
VOUT (V)
VBAT (V)
VRO (V)
VCS (V)
()
VV RESET
()
VV PREEND
Remark CS, PREEND and RESET are pulled up to VOUT. Y-axis is an arbitrary scale.
Figure 5 Operation Timing Chart
BATTERY BACKUP SWITCHING IC ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
19
Operation
The internal configuration of the S-8424A Series is as follows.
Voltage regulator 1, which stabilizes input voltage (VIN) and outputs it to VRO
Voltage regulator 2, which stabilizes input voltage (VIN) and outputs it to VOUT
CS voltage detector, which monitors input voltage (VIN)
PREEND voltage detector, which monitors output voltage (VBAT)
RESET voltage detector, which monitors output voltage (VOUT)
Switch unit
The functions and operations of the above-listed elements are described below.
1. Voltage Regulators
The S-8424A Series features on-chip voltage regulators with a small dropout voltage. The voltage of the VRO
and VOUT pins (the output pins of the voltage regulator) can separately be selected for the output voltage in
0.1 V steps between the range of 2.3 to 5.4 V.
[Dropout voltage Vdrop1, Vdrop2]
Assume that the voltage output from the VRO pin is VRO(E) under the conditions of output voltage 1
described in the electrical characteristics table. VIN1 is defined as the input voltage at which output voltage
from the VRO pin becomes 98% of VRO(E) when the input voltage VIN is decreased. Then, the dropout
voltage Vdrop1 is calculated by the following expression.
Vdrop1 = VIN1 VRO(E) × 0.98
Similarly, assume that the voltage of the VOUT pin is VOUT(E) under the conditions of output voltage 2
described in the electrical characteristics table. VIN2 is defined as the input voltage at which the output
voltage from the VOUT pin becomes 98% of VOUT(E). Then, the dropout voltage Vdrop2 is calculated by
the following expression.
Vdrop2 = VIN2 VOUT(E) × 0.98
2. Voltage Detector
The S-8424A Series incorporates three high-precision, low power consuming voltage detectors with
hysteresis characteristics. The power of the CS voltage detector is supplied from the VIN and VBAT pins.
Therefore, the output is stable as long as the primary or backup power supplies are within the operating
voltage range (1.7 to 16 V). All outputs are Nch open-drain, and need pull-up resistors of about 100 kΩ.
2.1 CS Voltage Detector
The CS voltage detector monitors the input voltage VIN (VIN pin voltage). The detection voltage can be
selected from between 2.4 and 5.3 V in 0.1 V steps. The result of detection is output at the CS pin:
“Low” for lower voltage than the detection level and “High” for higher voltage than the release level
(however, when the VOUT pin voltage is the CS output inhibit voltage (VSW2), a low level is output).
Input voltage
Output voltage
Release voltage
Detection voltage
Figure 6 Definition of Detection and Release Voltages
OU an“ Switch comroller stw de‘ector 77/- 747 ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
20
2.2 PREEND Voltage Detector
The PREEND voltage detector monitors the input voltage VBAT (VBAT pin voltage). The detection voltage
can be selected from between 1.7 V and 3.4 V in 0.1 V steps. A higher voltage can also be seclected
keeping a constant difference with the RESET voltage. This function enables the warning that the backup
battery is running out. The detection result is output to the PREEND pin: “Low” for lower voltages than
the detection voltage and “High” for higher voltages than the release voltage. The power supply of the
PREEND voltage detector is supplied from the VIN pin. The output is valid only when the voltage is
supplied from the VIN pin to the VOUT pin (VIN VSW1). The output is the low level when the voltage is
supplied from the VBAT pin to the VOUT pin (VIN < VSW1).
2.3 RESET Voltage Detector
The RESET voltage detector monitors the output voltage VOUT (VOUT pin voltage). The detection
voltage can be selected from between 1.7 V and 3.4 V in 0.1 V steps. The result of detection is output at
the RESET pin: “Low” for lower voltages than the detection level and “High” for higher voltages than
the release level. RESET outputs the normal logic if the VOUT pin voltage is 1.0 V or more.
Caution The PREEND and RESET voltage detectors use the different pins, respectively.
Practically, the current is taken from the VBAT side, and consider the I/O voltage
difference (Vdif) of M1 when M1 is ON.
3. Switch Unit
The switch unit consists of the VSW1 and VSW2 detectors, a switch controller, voltage regulator 2, and switch
transistor M1 (Refer to “Figure 7 Switch Unit”).
REG2
VOUT
M1
VBAT
VIN
Switch
controller
VSW1
detector
VSW2
detector
Figure 7 Switch Unit
3.1 VSW1 Detector
The VSW1 detector monitors the power supply voltage VIN and sends the results of detection to the switch
controller. The detection voltage (VSW1) can be set to 77 ±2% or 85 ±2% of the CS release voltage
+VDET1.
BATTERY BACKUP SWITCHING IC ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
21
3.2 VSW2 Detector
The VSW2 detector monitors the VOUT pin voltage and keeps the CS release voltage output low until the
VOUT pin voltage rises to VSW2 voltage. The CS pin output then changes from low to high if the VIN pin
voltage is more than the CS release voltage (+VDET1) when the VOUT pin voltage rises to 95 ±2% of the
output voltage of voltage regulator 2 (VOUT). The CS pin output changes from high to low regardless of
the VSW2 voltage when the VIN pin voltage drops to less than the CS detection voltage (VDET1).
The CS pin output remains high if the VIN pin voltage stays higher than the CS detection voltage (VDET1)
when the VOUT pin voltage drops to less than the VSW2 voltage due to an undershoot.
3.3 Switch Controller
The switch controller controls voltage regulator 2 and switch transistor M1. There are two statuses
corresponding to the power supply voltage VIN (or power supply voltage VBAT) sequence: a special
sequence status and a normal sequence status. When the power supply voltage VIN rises and becomes
equal to or exceeds the CS release voltage (+VDET1), the normal sequence status is entered, but until then
the special sequence status is maintained.
(1) Special sequence status
The switch controller sets voltage regulator 2 ON and switch transistor M1 OFF from the initial status
until the primary power supply voltage VIN is connected and reaches more than the CS release
voltage (+VDET1) in order to prevent consumption of the backup power supply regardless of the VSW1
detector status. This status is called the special sequence status.
(2) Normal sequence status
The switch controller enters the normal sequence status from the special sequence status once the
primary power supply voltage VIN reaches more than the CS release voltage (+VDET1).
Once the normal sequence is entered, the switch controller switches voltage regulator 2 and switch
transistor M1 ON/OFF as shown in Table 13 according to the power supply voltage VIN. The time
required for voltage regulator 2 to be switched from OFF to ON is a few hundred μs at most. During
this interval, voltage regulator 2 and switch transistor M1 may both switch OFF and the VOUT pin
voltage may drop. To prevent this, connect a capacitor of 10 μF or more to the VOUT pin.
When the VOUT pin voltage becomes lower than the RESET detection voltage, the status returns to
the special sequence status.
Table 13 ON/OFF Switching of Voltage Regulator 2 and
Switch Transistor M1 According to Power Supply Voltage (VIN)
Power Supply Voltage (VIN) Voltage Regulator 2 Switch Transistor M1 VOUT Pin Voltage
VIN > VSW1 ON OFF VOUT
VIN < VSW1 OFF ON VBAT Vdif
ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
22
3.4 Switch Transistor M1
Voltage regulator 2 is also used to switch from VIN pin to VOUT pin. Therefore, no reverse current flows
from VOUT pin to VIN pin when voltage regulator 2 is OFF. The output voltage of voltage regulator 2 can
be selected from between 2.3 V and 5.4 V in 0.1 V steps.
The on-resistance of switch transistor M1 is 60 Ω or lower (IOUT = 10 to 500 μA).
Therefore, when M1 is switched ON and VOUT pin is connected to VBAT pin, the voltage drop (Vdif)
caused by M1 is 60 × IOUT (output current) at maximum., and VBAT Vdif (max.) is output to the VOUT pin at
minimum.
When voltage regulator 2 is ON and M1 is OFF, the leakage current of M1 is kept below 0.1 μA max. (VIN
= 6 V, Ta = 25°C) with the VBAT pin grounded (VSS pin).
VIN VBAT
VOUT
M1
Vdif
REG2
Figure 8 Definition of Vdif
BATTERY BACKUP SWITCHING IC Power suggly agghcation: 0 V to 10 V Sguare wave 10V Input vunage ' ‘ > o v Overshool l e__r_shoot ompm voHage 10 V 10V 99 ge ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
23
Transient Response
1. Line Transient Response Against Input Voltage Variation
The input voltage variation differs depending on whether the power supply input (0 V to 10 V square wave) is
applied or the power supply variation (6 V and 10 V square waves) is applied. This section describes the
ringing waveforms and parameter dependency of each type. The test circuit is shown for reference.
Power supply application: 0 V to 10 V Square wave
In
p
ut volta
g
e
Output voltage
0 V
10 V
Undershoot
Overshoot
S-8424A
Series
Fast amplifier
P. G.
VSS
VOUT
VIN
COUT
RL
Oscilloscope
Figure 10 Test Circuit Figure 9 Power Supply Application:
0 V to 10 V Square Wave
Power Supply Application
VOUT pin VRO pin
Input Volta
g
e
5 V/div
0 V
10 V
Output Volta
g
e
(
0.5 V/div
)
(
0.5 V/div
)
COUT = 22 μF, IOUT = 50 mA, Ta = 25°C
t (100 μs/div)
Input Volta
g
e
5 V/div
0 V
10 V
Output Volta
g
e
(
0.5 V/div
)
t (100 μs/div)
CRO = 22 μF, IRO = 30 mA, Ta = 25°C
Figure 11 Ringing Waveform of Power Supply
Application (VOUT Pin)
Figure 12 Ringing Waveform of Power Supply
Application (VRO Pin)
Inpm vonage Output voltage 10V EV Overshom Undersnom ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
24
Power supply variation: 6 V and 10 V square waves
Overshoot
6 V
10 V
Input
voltage
Output
voltage
Undershoot
S-8424A Series
Fast amplifier
P. G.
VSS
VOUT
VIN
COUT RL
Oscillo-scope
Figure 14 Test Circuit
Figure 13 Power Supply Variation:
6 V and 10 V Square Waves
Power Supply Variation
VOUT pin
Input Voltage
4 V/div
Output Volta
g
e
(
50 mV/div
)
6 V
10 V
10 V
6 V
COUT = 22 μF, IOUT = 50 mA, Ta = 25°C
t (100 μs/div)
Figure 15 Ringing Waveform of Power Supply Variation (VOUT Pin)
VRO pin
Input Volta
g
e
4 V/div
Output Volta
g
e
(
50 mV/div
)
6 V
10 V
CRO = 22
μ
F, IRO = 30 mA, Ta = 25°C
10 V
6 V
t (100 μs/div)
Figure 16 Ringing Waveform of Power Supply Variation (VRO Pin)
BATTERY BACKUP SWITCHING IC Reference data: Dependenc of outpm currem (I ) load cauacmance (C ) ian variation wxdth (AV‘N) temgeralure Ta ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
25
Reference data: Dependency of output current (IOUT), load capacitance (COUT), input variation width (ΔVIN),
temperature (Ta)
For reference, the following pages describe the results of measuring the ringing amounts at the VOUT and
VRO pins using the output current (IOUT), load capacitance (COUT), input variation width (ΔVIN), and
temperature (Ta) as parameters.
1.1 IOUT Dependency
(1) VOUT pin (2) VRO pin
Ringing amount (V)
IOUT (mA)
0.00
0.05
0.10
0.15
0.20
0.25
0 20 40 60
COUT = 22 μF, VIN = 6 V and 10 V, Ta = 25°C
Ringing amount (V)
IRO (mA)
0.00
0.05
0.10
0.15
0.20
0.25
0 20 40 60
CRO = 22 μF, VIN = 6 V and 10 V, Ta = 25°C
1.2 COUT Dependency
(1) VOUT pin (2) VRO pin
Ringing amount (V)
COUT (
μ
F)
0.00
0.10
0.20
0.30
0.40
0.50
0 10 40 50 20 30
IOUT = 50 mA, VIN = 6 V and 10 V, Ta = 25°C
Ringing amount (V)
CRO (μF)
0.00
0.10
0.20
0.30
0.40
0.50
0 10 40 50 20 30
IRO = 30 mA, VIN = 6 V and 10 V, Ta = 25°C
Overshoot
Undershoot
ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
26
1.3 ΔVIN Dependency
ΔVIN shows the difference between the low voltage fixed to 6 V and the high voltage.
For example, ΔVIN = 2 V means the difference between 6 V and 8 V.
(1) VOUT pin
(
2) VRO pin
Ringing amount (V)
IOUT=50 mA, COUT=22
μ
F, Ta=25°C
0.00
0.05
0.10
0.15
0.20
0.30
Δ
VIN (V)
0 1 2 3 4 5
0.25
Ringing amount (V)
IRO=30 mA, CRO=22
μ
F, Ta=25°C
Δ
VIN (V)
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0 1 2 3 4 5
1.4 Temperature Dependency
(1) VOUT pin
(
2) VRO pin
VIN=6 10 V,
IOUT=50 mA,
COUT=22
μ
F
0.00
0.05
0.10
0.15
0.20
0.25
0.30
–50 0 50 100
Ta ( °C)
Ringing amount (V)
VIN=6 10 V,
IOUT=30 mA,
CRO=22
μ
F
0.00
0.05
0.10
0.15
0.20
0.25
0.30
–50 0 50 100
Ringing amount (V)
Ta (°C)
Overshoot
Undershoot
BATTERY BACKUP SWITCHING IC Output 50 mA current m ”A f .. . "Emma! Undershuut Output current Figure 17 Output Voltage Variation due to Output Current ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
27
2. Load Transient Response Based on Output Current Fluctuation
The overshoot and undershoot are caused in the output voltage if the output current fluctuates between 10 μA and
50 mA (VRO is between 10 μA and 30 mA) while the input voltage is constant. Figure 17 shows the output
voltage variation due to the output current. Figure 18 shows the test circuit for reference. The latter half of this
section describes ringing waveform and parameter dependency.
10 μA
50 mA
Undershoot
Overshoot
Output
current
Output
current
Figure 17 Output Voltage Variation due to
Output Current
Oscilloscope
VSS
VOUT
VIN
COUT
S-8424A
Series
Figure 18 Test Circuit
Figure 19 shows the ringing waveforms at the VOUT pin and Figure 20 shows the ringing waveforms at the VRO
pin due to the load variation, respectively.
VOUT pin
Output current
Output voltage
(50 mV/div)
50 mA
10 μA
t (500 ms/div)
50 mA
10 μA
VIN = 6.0 V, COUT = 22 μF, Ta = 25°C
t (50 μs/div)
Figure 19 Ringing Waveform due to Load Variation (VOUT Pin)
VRO pin
30 mA
Output current
Output voltage
(20 mV/div)
10 μA
t (20 ms/div)
V
IN
=6.0 V, C
RO
=22 μF, Ta=25°C
t (50 μs/div)
30 mA
10 μA
Figure 20 Ringing Waveform due to Load Variation (VRO Pin)
Reference data: Dependenc of inoulvoltaqe (ViN) load caDaCitance (C ) output variation width (AI ) and temgeralure Ta ‘ ,‘~¥_ 7 , 7 ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
28
Reference data: Dependency of input voltage (VIN), load capacitance (COUT), output variation width (ΔIOUT), and
temperature (Ta)
2.1 VIN Dependency
(1) VOUT pin (2) VRO pin
COUT = 22 μF, IOUT = 50 mA and 10 μA, Ta = 25°C CRO = 22 μF, IRO = 30 mA and 10 μA, Ta = 25°C
Ringing amount (V)
VIN (V)
0.00
0.04
0.06
0.08
0.10
0.12
45 8 1067
0.02
9
Ringing amount (V)
VIN (V)
0.00
0.04
0.06
0.08
0.10
0.12
45 8 1067
0.02
9
2.2 COUT Dependency
(1) VOUT pin (2) VRO pin
Ringing amount (V)
COUT (
μ
F)
0.00
0.20
0.30
0.40
0.50
0.60
0 10 40 50 20 30
0.10
VIN = 6.0 V, IOUT = 50 mA and 10 μA, Ta = 25°C
Ringing amount (V)
CRO (μF)
0.00
0.10
0.15
0.20
0.25
0.30
0 10 40 50 20 30
0.05
VIN = 6.0 V, IRO = 30 mA and 10
μ
A, Ta = 25°C
Overshoot
Undershoot
BATTERY BACKUP SWITCHING IC ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
29
2.3 ΔIOUT Dependency
ΔIOUT and ΔIRO show the fluctuation between the low current stabilized at 10 μA and the high current. For
example, ΔIOUT = 10 mA means a fluctuation between 10 μA and 10 mA.
(1) VOUT pin
(
2) VRO pin
ΔIOUT (mA)
COUT = 22
μ
F, VIN = 6 V, Ta = 25°C
Ringing amount (V)
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0 102030405060
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0 10 20 30 40 50 60
Ringiing amount (V)
C
RO
=22 μF, V
IN
=6.0 V, Ta=25°C
ΔI
RO
(mA)
2
.4 Temperature Dependenc
y
(1) VOUT pin
(
2) VRO pin
Ta (°C)
VIN=6.0 V, IOUT=50 mA 10 μA, COUT=22 μF
Ringing amount (V)
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
50 0 50 100
Ta (°C)
V
IN
=6.0 V, I
RO
=30 mA 10 μA, C
RO
=22 μF
Ringing amount (V)
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
50 0 50 100
Overshoot
Undershoot
__.|W T3, TD EN EE M RM 2 P 4 8 I WZZ|W Mé
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
30
Standard Circuit
VRO
VRO
10 μF
CS
VSS
6 V 3 V
VIN VBAT
S-8424
A
Series
0.1 μF
+
+
1 kΩ
10 μF
VOUT
VOUT
10 μF
+
PREEND
RESET
VOUT
100 kΩ
100 kΩ
VOUT
100 kΩ
VOUT
Figure 21 Standard Circuit
Caution 1. Be sure to add a 10 μF or more capacitor to the VOUT and VRO pins.
2. The above connections and values will not guarantee correct operation. Before setting these
values, perform sufficient evaluation on the application to be actually used.
BATTERY BACKUP SWITCHING IC L w ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
31
Precautions
In applications with small IRO or I
OUT, the output voltages VRO and VOUT may rise, causing the load stability to
exceed standard levels. Set IRO and IOUT to 10 μA or more.
Attach the proper capacitor to the VOUT pin to prevent the RESET voltage detector (which monitors the VOUT
pin) from coming active due to undershoot.
Watch for overshoot and ensure it does not exceed the ratings of the IC chips and/or capacitors attached to the
VRO and VOUT pins.
Add a 10 μF or more capacitor to the VOUT and VRO pins.
When VIN rises from the voltage more than VSW1, a low pulse of less than 4 ms flows through the PREEND pin
even when VBAT is more than the PREEND release voltage. Thus when monitoring the PREEND pin, make
sure to take the 4 ms interval or more after the rise of VIN.
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in
electrostatic protection circuit.
Application Circuits
1. When Using Timer Micro controllers for Backup to display PREEND in the primary CPU
A
ddress data
VRO
10 μF
RESET
CS
6 V
VIN
VBAT
VOUT
3 V
0.1 μF
1 kΩ
10 μFVSS
CS
RESET
VCC
100 kΩ
100 kΩ
Timer
microcontroller
S-8424
A
Series
RESET
VCC
Main CPU
+
+
+
10 μF
PREEND
INT
100 kΩ
Figure 22 Application Circuit 1
ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
32
2. When Using Secondary Battery as Backup Battery
VRO
10 μ
F
RESET
CS
VSS
6 V
VIN
VBAT
VOUT
S - 8424
A
Series
+
+
3 V
0.1 μ
F
VCC
INT
Microcontroller
10 μ
F
+
100 k
Ω
10 μ
F
100 k
Ω
RESET
Figure 23 Application Circuit 2
Remark The backup battery can be floating-recharged by using voltage regulator 1.
3. Memory Card
100 kΩ
VSS
VIN
S-8424
A
Series
RESET VBAT
CS
VOUT
+
Card unit
+
0.1 μF3 V
SRAM
CS
VIN
BDT1
CS
10 μF
10 μF
PREEND
BDT2
100 kΩ100 kΩ
Figure 24 Application Circuit 3
Caution The above connections and values will not guarantee correct operation. Before setting these
values, perform sufficient evaluation on the application to be actually used.
BATTERY BACKUP SWITCHING IC ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
33
Characteristics
1. Voltage Regulator Unit (VRO = VOUT = 3.0 V)
1.1 Input Voltage (VIN) vs. Output Voltage (VRO) Characteristics (REG1)
(1) Ta = 85°C (2) Ta = 25°C
IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
2.0
2.4
2.8
3.2
2.0 3.0 4.0 5.0
VIN (V)
VRO (V)
IRO =90 mA
IRO =10 mA
2.0
2.4
2.8
3.2
2.0 3.0 4.0 5.0
VIN (V)
VRO (V)
IRO =90 mA
IRO =10 mA
(3) Ta = 40°C
IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
2.0
2.4
2.8
3.2
2.0 3.0 4.0 5.0
VIN (V)
VRO (V)
IRO =10 mA
IRO =90 mA
1.2 Input Voltage (VIN) vs. Output Voltage (VOUT) Characteristics (REG2)
(1) Ta = 85°C (2) Ta = 25°C
IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
2.0
2.4
2.8
3.2
2.0 3.0 4.0 5.0
VIN (V)
VOUT (V)
IOUT = 90 mA
IOUT = 10 mA
2.0
2.4
2.8
3.2
2.0 3.0 4.0 5.0
VIN (V)
VOUT (V)
IOUT =90 mA
IOUT = 10 mA
(3) Ta = 40°C
IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
2.0
2.4
2.8
3.2
2.0 3.0 4.0 5.0
VIN (V)
VOUT (V)
IOUT = 10 mA
IOUT = 90 mA
ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
34
1.3 Output Current (I
RO
) vs. Dropout Voltage (V
drop1
) Characteristics 1.4 Output Current (I
OUT
) vs. Dropout Voltage (V
drop2
) Characteristics
0.0
0.2
0.4
0.6
0.8
1.0
0 0.02 0.04 0.06
I
RO
(A)
Vdrop1 (V)
Ta =
85
°
C
25 °
C
40
°
C
0.0
0.2
0.4
0.6
0.8
1.0
0 0.02 0.04 0.06
IOUT (A)
V
drop2 (V)
Ta =85°C
25°C
40°C
1.5 Output Current (I
RO
) vs. Output Voltage (V
RO
) Characteristics 1.6 Output Current (I
OUT
) vs. Output Voltage (V
OUT
) Characteristics
2.85
2.95
3.05
3.15
3.25
1
μ
100
μ
10 m 1
I
RO
(A)
VOUT (V)
Ta = 40
°
C
25
°
C
85
°
C
V
IN
= 6 V
2.85
2.95
3.05
3.15
3.25
1
μ
100
μ
10 m 1
I
RO
(A)
VRO (V)
Ta =
40
°
C
25
°
C
85
°
C
V
IN
= 6
V
1.7 Output voltage (V
RO
) Temperature Characteristics 1.8 Output voltage (V
OUT
) Temperature Characteristics
30
10
20
0
30
20
10
40 20 0 20 40 60 80 100
Ta (°C)
ΔVRO (mV)
VIN = 6 V, IRO = 30 mA
Based on VRO voltage when Ta is 25
°C
30
10
20
0
30
20
10
40 20 0 20 40 60 80 100
Ta (°C)
ΔVOUT (mV)
VIN =6 V, IOUT =50 mA
Based on VOUT voltage when Ta is 25°C
1.9 Input Stability (V
RO
) Temperature Characteristics 1.10 Input Stability (V
OUT
) Temperature Characteristics
0
15
10
5
20
Ta (°C)
ΔVRO2 (mV)
40 20 0 20 40 8060 100
0
15
10
5
20
Ta (°C)
ΔVOUT2 (mV)
40 20 0 20 40 8060 100
1.11 Load Stability (V
RO
) Temperature Characteristics 1.12 Load Stability (V
RO
) Temperature Characteristics
Ta (°C)
0
10
20
30
40
ΔVRO1 (mV)
40 20 02040 8060 100
Ta (°C)
0
10
20
30
40
ΔVOUT (mV)
40 20 0 20 40 8060 100
BATTERY BACKUP SWITCHING IC ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
35
2. Voltage Detector
2.1 CS Voltage Detector (VDET1 = 3.3 V)
(1) Detection voltage (VDET1) temperature
characteristics
(2) Output current (ISINK) characteristics
20
10
0
10
20
ΔCS (mV)
Ta (°C)
40 20 0 20 40 8060 100
Based on CS (VDET1) voltage when Ta is 25
°C
0
5
10
15
20
25
30
0.0 1.0 2.0 3.0 4.0
VDS (V)
CS ISINK (mA)
VIN = 3 V
VIN = 1.7 V
Ta = 25°C
(3) Output current (ISINK) temperature characteristics
0
2
4
6
8
10
CS ISINK (mA)
Ta (
°
C )
40
20 0 20 40 80 60 100
V
IN =
V
BAT =
2.0 V, V
DS =
0.5 V
2.2 RESET Voltage Detector (VDET2 = 2.2 V)
(1) Detection voltage (VDET2) temperature
characteristics
(2) Output current (ISINK) characteristics
20
10
0
10
20
ΔRESET (mV)
Ta (
°
C
)
40
20 0 20 40 80
60 100
Based on
RESET
(
V
DET2
)
voltage
when
Ta i s 2 5
°
C
0
5
10
15
20
25
30
0.0 1.0 2.0 3.0 4.0
VDS (V)
RESET ISINK (mA)
VIN =1.7 V
VIN =3 V
Ta =25°C
(3) Output current (ISINK) temperature characteristics
0
4
8
RESET ISINK (mA)
Ta (°C)
40 20 0 20 40 80 60 100
2
6
10
VIN = VBAT = 2.0 V, VDS = 0.5 V
ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
36
2.3 PREEND Voltage Detector (VDET3 = 2.6 V)
(1) Detection voltage (VDET3) temperature
characteristics
(2) Output current (ISINK) characteristics
20
10
0
10
20
ΔPREEND (mV)
40
20 0 20 40 80
60 100
V
DS
(V)
Based on PREEND (
V
DET3
) voltage
when Ta i s 2 5
°
C
VIN = 3 V
VIN = 1.7 V
VDS (V)
0
5
10
15
20
25
30
0.0 1.0 2.0 3.0 4.0
PREEND ISINK (mA)
Ta = 25°C
(3) Output current (ISINK) temperature characteristics
V
IN
= V
BAT
= 2.0 V, V
DS
= 0.5 V
10
0
4
8
PREEND ISINK (mA)
Ta (
°
C
)
40
20 0 20 40 80
60 100
2
6
BATTERY BACKUP SWITCHING IC ABLIC Inc.
BATTERY BACKUP SWITCHING IC
Rev.4.0_00 S-8424A Series
37
3. Switch Unit
3.1 Switch Voltage (VSW1) Temperature
Characteristics
3.2 CS Output Inhibit Voltage (VSW2) Temperature
Characteristics
Δ VSW1 (mV)
Ta (°C)
40 20 0 20 40 8060 100
20
10
0
10
20
Based on VSW1 voltage when Ta is 25°C
Δ
VSW2 (mV)
Ta (°C)
40 20 0 20 40 8060 100
20
10
0
10
20
Based on VSW2 voltage when Ta is 25
°C
3.3 Input Voltage (VBAT) vs. VBAT Switch
Resistance(RSW) Characteristics
3.4 VBAT Switch Resistance (RSW) Temperature
Characteristics
0
10
20
30
40
50
60
12345
VBAT (V)
RSW (Ω)
IOUT = 500
μ
A
RSW (Ω)
Ta (°C)
40 20 0 20 40 8060 100
0
10
20
30
40
50
60
VBAT =3 V, IOUT =500
μ
A
3.5 VBAT Switch Leakage Current (ILEAK) Temperature
Characteristics
0
10
20
30
ILEAK (nA)
Ta (°C)
40 20 0 20 40 8060 100
5
15
25 VIN =6.0 V, VBAT =0 V
w (H ABLIC Inc.
BATTERY BACKUP SWITCHING IC
S-8424A Series Rev.4.0_00
38
4. Consumption Current
4.1 VIN vs. VIN Consumption Current (ISS1)
Characteristics
4.2 VBAT vs. VBAT2 Consumption Current (IBAT2)
Characteristics
Ta =85°C
25°C
40°C
0
4
8
12
16
024681012141618
VIN (V)
ISS1 (
μ
A)
0.0
0.5
1.0
1.5
2.0
2.0 2.4 2.8 3.2 3.6 4.0
VBAT (V)
IBAT2 (
μ
A)
Ta =85°C
25°C
40°C
4.3 Consumption Current Temperature
Characteristics
(1) ISS1 (2) I
BAT2
0
4
8
12
16
ISS1 (
μ
A)
Ta (°C)
40 20 0 20 40 8060 100
VIN = 6.0 V, VBAT =3.0 V
0.0
0.5
1.0
1.5
2.0
IBAT2 (
μ
A)
Ta (°C)
40 20 020 40 8060 100
VIN =open, VBAT = 3.0 V
No. FTOOS-A-P—SD-1 .2
No.
TITLE
UNIT
ANGLE
ABLIC Inc.
TSSOP8-E-PKG Dimensions
No. FT008-A-P-SD-1.2
FT008-A-P-SD-1.2
0.17±0.05
3.00 +0.3
-0.2
0.65
0.2±0.1
14
5
8
mm
V A A A A 1 75:0 1 4 O V 5.510.05 < 12010.3="" 4="" f="" +04="" 33="" 02="" 410="" 1710.1="" no.="" ftoos-e-c-sd-1.0="" title="" no.="" angle="" unit="">
No.
TITLE
UNIT
ANGLE
ABLIC Inc.
ø1.55±0.05
2.0±0.05
8.0±0.1 ø1.55 +0.1
-0.05
(4.4)
0.3±0.05
1
45
8
4.0±0.1
Feed direction
TSSOP8-E-Carrier Tape
No. FT008-E-C-SD-1.0
FT008-E-C-SD-1.0
+0.4
-0.2
6.6
mm
\ a330t2 N0. FTOOS—E—R-SD-1 .0
No.
TITLE
UNIT
ANGLE
ABLIC Inc.
Enlarged drawing in the central part
No. FT008-E-R-SD-1.0
2±0.5
ø13±0.5
ø21±0.8
13.4±1.0
17.5±1.0
3,000
QTY.
TSSOP8-E-Reel
FT008-E-R-SD-1.0
mm
\ m330:2 N0. FTOOS—E—R-S1—1D
No.
TITLE
UNIT
ANGLE
ABLIC Inc.
Enlarged drawing in the central part
2±0.5
ø13±0.5
ø21±0.8
13.4±1.0
17.5±1.0
4,000
QTY.
TSSOP8-E-Reel
FT008-E-R-S1-1.0
mm
No. FT008-E-R-S1-1.0
Disclaimers (Handling Precautions)
1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and
application circuit examples, etc.) is current as of publishing date of this document and is subject to change without
notice.
2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of
any specific mass-production design.
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products
described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other
right due to the use of the information described herein.
3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described
herein.
4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute
maximum ratings, operation voltage range and electrical characteristics, etc.
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to
the use of the products outside their specified ranges.
5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they
are used and verify suitability, safety and other factors for the intended use.
6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related
laws, and follow the required procedures.
7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of
weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands
caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear,
biological or chemical weapons or missiles, or use any other military purposes.
8. The products are not designed to be used as part of any device or equipment that may affect the human body, human
life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control
systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment,
aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by
ABLIC, Inc. Do not apply the products to the above listed devices and equipments.
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of
the products.
9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should
therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread
prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social
damage, etc. that may ensue from the products' failure or malfunction.
The entire system in which the products are used must be sufficiently evaluated and judged whether the products are
allowed to apply for the system on customer's own responsibility.
10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the
product design by the customer depending on the intended use.
11. The products do not affect human health under normal use. However, they contain chemical substances and heavy
metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be
careful when handling these with the bare hands to prevent injuries, etc.
12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
13. The information described herein contains copyright information and know-how of ABLIC Inc. The information
described herein does not convey any license under any intellectual property rights or any other rights belonging to
ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this
document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express
permission of ABLIC Inc.
14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales
representative.
15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into
the English language and the Chinese language, shall be controlling.
2.4-2019.07
www.ablic.com