BU2363FV Datasheet by Rohm Semiconductor

View All Related Products | Download PDF Datasheet
‘ Technical Note ( a f F1122 Rigs w mm ...........................
BU2363FV
1/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
High-performance Clock Generator Series
DVD-audio Reference
Clock Generators for A/V Equipments
BU2285FV,BU2363FV
Description
These clock generators are an IC generating three types of clocks - VIDEO, AUIDIO and SYSTEM clocks – necessary for
DVD player systems, with a single chip through making use of the PLL technology. Particularly, the VIDEO clock is a
DVD-Audio reference and yet achieves high C/N characteristics necessary to provide high definition images.
Features
1) Connecting a crystal oscillator generates multiple clock signals with a built-in PLL.
2) The AUDIO clock provides switching selection outputs
3) The VIDEO clock achieves high C/N characteristics.
4) Single power supply of 3.3 V
Applications
DVD players
Line up matrix
Part name BU2285FV BU2363FV
Supply voltage [V] 3.0 ~ 3.6 3.0 ~ 3.6
Reference frequency [MHz] 36.8640 36.8640
Output frequency[MHz]
DVD VIDEO
2 54.0000 54.0000
1 27.0000 27.0000
1/2 13.5000
DVD / CD AUDIO
(Switching outputs)
768fs 36.8640 / 33.8688 36.8640 / 33.8688
512fs
384fs 18.4320 / 16.9344 18.4320 / 16.9344
256fs
SYSTEM 768fs 33.8688 33.8688
384fs 16.9344 16.9344
Jitter 1σ [psec] 50 50
C/N [dB] (VIDEO) -60 -80
Package SSOP-B24 SSOP-B16
Absolute Maximum Ratings (Ta=25)
Parameter Symbol BU2285FV BU2363FV Unit
Supply voltage VDD -0.5 ~ +7.0 -0.5 ~ +7.0 V
Input voltage VIN -0.5 ~ VDD+0.5 -0.5 ~ VDD+0.5 V
Storage temperature range Tstg -30 ~ +125 -30 ~ +125
Power dissipation PD 630 *1 450 *2 mW
*1 In the case of exceeding at Ta = 25, 6.3mW should be reduced per 1
*2 In the case of exceeding at Ta = 25, 4.5mW should be reduced per 1
*Operating is not guaranteed.
*The radiation-resistance design is not carried out.
*Power dissipation is measured when the IC is mounted to the printed circuit board.
Recommended Operating Range
Parameter Symbol BU2285FV BU2363FV Unit
Supply voltage VDD 3.0 ~ 3.6 3.0 ~ 3.6 V
Input H voltage VIH 0.8VDD ~ VDD 0.8VDD ~ VDD V
Input L voltage VIL 0.0 ~ 0.2VDD 0.0 ~ 0.2VDD V
Operating temperature Topr -5 ~ +70 -10 ~ +70
Maximum output load CL 15 15 pF
No.09005EAT03
BU2285FV,BU2363FV
Technical Note
2/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
Electrical characteristics
BU2285FV(VDD=3.3V, Ta=25, Crystal frequency 36.8640MHz, unless otherwise specified.)
Parameter Symbol Limits Unit Conditions
Min. Typ. Max.
Output L voltage VOL 0.4 V IOL=4.0mA
Output H voltage VOH 2.4 V IOH=-4.0mA
Consumption current IDD 30 50 mA At no load
CLK54M CLK54M 54.0000 MHz XTAL×375 / 128 / 2
CLK27M CLK27M 27.0000 MHz XTAL×375 / 128 / 4
CLKDAC
CLKDAC_H 27.0000 MHz At CTRLB=OPEN,
XTAL×375 / 128 / 4
CLKDAC_L 13.5000 MHz At CTRLB=L,
XTAL×375 / 128 / 8
CLK33M CLK33M 33.8688 MHz XTAL×147 / 40 / 4
CLK16M CLK16M 16.9344 MHz XTAL×147 / 40 / 8
CLKA
CLKA_H 36.8640 MHz At CTRLA=OPEN,
XTAL output
CLKA_L 33.8688 MHz At CTRLA=L,
XTAL×147 / 40 / 4
CLKB
CLKB_H 18.4320 MHz At CTRLA=OPEN,
XTAL / 2 output
CLKB_L 16.9344 MHz At CTRLA=L,
XTAL×147 / 40 / 8
Duty Duty 45 50 55 % Measured at a voltage of 1/2VDD
Period-Jitter 1σ P-J 1σ 50 psec *1
Period-Jitter MIN-MAX P-J
MIN-MAX 300 psec *2
Rise Time Tr 2.5 nsec Period of transition time required for the clock
output to reach 80% from 20% of VDD
Fall Time Tf 2.5 nsec Period of transition time required for the clock
output to reach 20% from 80% of VDD
Output Lock-Time Tlock 1 msec *3
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN.
If the input frequency is set to 36.8640MHz, the output frequency will be as listed above.
BU2285FV,BU2363FV
Technical Note
3/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
BU2363FV(VDD=3.3V, Ta=25, Crystal frequency 36.8640MHz, unless otherwise specified.)
Parameter Symbol Limits Unit Conditions
Min. Typ. Max.
Output L voltage VOL 0.4 V IOL=4.0mA
Output H voltage VOH 2.4 V IOH=4.0mA
Consumption current IDD 30 50 mA At no load
CLK54M CLK54M 54.0000 MHz XTAL×375 / 64 / 4
CLK27M CLK27M 27.0000 MHz XTAL×375 / 64 / 8
CLK33M CLK33M 33.8688 MHz XTAL×147 / 40 / 4
CLK16M CLK16M 16.9344 MHz XTAL×147 / 40 / 8
CLK768FS1
CLK768_H 36.8640 MHz At FSEL=OPEN,
XTAL output
CLK768_L 33.8688 MHz At FSEL=L,
XTAL×147 / 40 / 4
CLK384FS2
CLK384_H 18.4320 MHz At FSEL=OPEN,
XTAL / 2 output
CLK384_L 16.9344 MHz At FSEL=L,
XTAL×147 / 40 / 8
Duty Duty 45 50 55 % Measured at a voltage of 1/2VDD
Period-Jitter 1σ P-J 1σ 50 psec *1
Period-Jitter MIN-MAX P-J
MIN-MAX 300 psec *2
Rise Time Tr 2.5 nsec Period of transition time required for the clock
output to reach 80% from 20% of VDD
Fall Time Tf 2.5 nsec Period of transition time required for the clock
output to reach 20% from 80% of VDD
Output Lock-Time Tlock 1 msec *3
C/N 54M C/N 54M -65 -80 dB *4 (At a maximum load)
C/N 33M C/N 33M -50 -60 dB *4 (At a maximum load)
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN.
If the input frequency is set to 36.8640MHz, the output frequency will be as listed above.
Common to BU2285FV and BU2363FV:
*1 Period-Jitter 1σ
This parameter represents standard deviation (1 σ) on cycle distribution data at the time when the output clock cycles
are sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd.
*2 Period-Jitter MIN-MAX
This parameter represents a maximum distribution width on cycle distribution data at the time when the output clock
cycles are sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd.
*3 Output Lock-Time
The Lock-Time represents elapsed time after power supply turns ON to reach a 3.0V voltage, after the system is
switched from Power-Down state to normal operation state, or after the output frequency is switched, until it is stabilized
at a specified frequency, respectively.
BU2363FV
*4 Make measurements with settings of SPAN to 100kHz, RBW to 1kHz, and VBW to 100Hz taking the middle point
between (54.0000MHz20kHz) and (33.8688MHz20kHz) as a measurement point.
BU2285FV,BU2363FV
Technical Note
4/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
Reference data (BU2285FV basic data)
Fig.1 54MHz output waveform
VDD=3.3V, at CL=15pF
Fig.2 54MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.3 54MHz Spectrum
VDD=3.3V, at CL=15pF
Fig.4 27MHz output waveform
VDD=3.3V, at CL=15pF
Fig.5 27MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.6 27MHz Spectrum
VDD=3.3V at CL=15pF
Fig.7 13.5MHz output waveform
VDD=3.3V, at CL=15pF
Fig.8 13.5MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.9 13.5MHz Spectrum
VDD=3.3V, at CL=15pF
Fig.10 33.9MHz output waveform
VDD=3.3V, at CL=15pF
Fig.11 33.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.12 33.9MHz Spectrum
VDD=3.3V, at CL=15pF
5.0nsec / div
1.0V / div
500psec / div
1.0V / div
10KHz / div
10dB / div
5.0nsec / div
1.0V / div
500psec / div
1.0V / div
10KHz / div
10dB / div
10.0nsec / div
1.0V / div
500
p
sec / div
1.0V / div
10KHz / div
10dB / div
5.0nsec / div
1.0V / div
500psec / div
1.0V / div
10KHz / div
10dB / div
RBW=1KHz
VBW=100Hz
RBW=1KHz
VBW=100Hz
RBW=1KHz
VBW=100Hz
RBW=1KHz
VBW=100Hz
BU2285FV,BU2363FV
Technical Note
5/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
Reference data (BU2285FV basic data)
Fig.13 16.9MHz output waveform
VDD=3.3V, at CL=15pF
Fig.14 16.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.15 16.9MHz Spectrum
VDD=3.3V, at CL=15pF
Fig.16 36.9MHz output waveform
VDD=3.3V, at CL=15pF
Fig.17 36.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.18 36.9MHz Spectrum
VDD=3.3V, at CL=15pF
Fig.19 18.4MHz output waveform
VDD=3.3V, at CL=15pF
Fig.20 18.4MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.21 18.4MHz Spectrum
VDD=3.3V, at CL=15pF
10.0nsec / div
1.0V / div
500psec / div
1.0V / div
10KHz / div
10dB / div
5.0nsec / div
1.0V / div
500psec / div
1.0V / div
10KHz / div
10dB / div
10.0nsec / div
1.0V / div
500psec / div
1.0V / div
10KHz / div
10dB / div
RBW=1KHz
VBW=100Hz
RBW=1KHz
VBW=100Hz
RBW=1KHz
VBW=100Hz
BU2285FV,BU2363FV
Technical Note
6/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
Fig.28 13.5MHz
TemperatureDuty
45
46
47
48
49
50
51
52
53
54
55
-25 0 25 50 75 100
TemperatureT[ ]
Duty Duty[]
Reference data (BU2285FV Temperature and Supply voltage variations data)
Fig.30 13.5MHz
TemperaturePeriod-Jitter MIN-MAX
0
100
200
300
400
500
600
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitterMIN-MAX
PJ-MIN-MAX[psec]
Fig.29 13.5MHz
TemperaturePeriod-Jitter 1σ
0
10
20
30
40
50
60
70
80
90
100
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitter1σPJ-1σ[psec]
Fig.27 27MHz
TemperaturePeriod-Jitter MIN-MAX
0
100
200
300
400
500
600
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitterMIN-MAX
PJ-MIN-MAX[psec]
Fig.26 27MHz
TemperaturePeriod-Jitter 1σ
0
10
20
30
40
50
60
70
80
90
100
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitter1σPJ-1σ[psec]
Fig.22 54MHz
TemperatureDuty
Fig.31 33.9MHz
TemperatureDuty
Fig.32 33.9MHz
TemperaturePeriod-Jitter 1σ
Fig.33 33.9MHz
TemperaturePeriod-Jitter MIN-MAX
45
46
47
48
49
50
51
52
53
54
55
-25 0 25 50 75 100
TemperatureT[]
DutyDuty[%]
0
10
20
30
40
50
60
70
80
90
100
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitter1σPJ-1σ[psec]
0
100
200
300
400
500
600
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitterMIN-MAX
PJ-MIN-MAX[psec]
Fig.23 54MHz
TemperaturePeriod-Jitter 1σ
Fig.24 54MHz
TemperaturePeriod-Jitter MIN-MAX
Fig.25 27MHz
TemperatureDuty
45
46
47
48
49
50
51
52
53
54
55
-25 0 25 50 75 100
TemperatureT[]
DutyDuty[]
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
45
46
47
48
49
50
51
52
53
54
55
-25 0 25 50 75 100
TemperatureT[]
DutyDuty[]
0
10
20
30
40
50
60
70
80
90
100
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitter1σPJ-1σ[psec]
0
100
200
300
400
500
600
-25 0 25 50 75 100
TemperatureT[]
Period-jitterMIN-MAX
PJ-MIN-MAX[psec]
VDD=2.9V
VDD=3.3V
VDD=3.7V VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
BU2285FV,BU2363FV
Technical Note
7/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
Reference data (BU2285FV Temperature and Supply voltage variations data)
Fig.40 18.4MHz
TemperatureDuty
45
46
47
48
49
50
51
52
53
54
55
-25 0 25 50 75 100
TemperatureT[ ]
Duty Duty[ ]
Fig.35 16.9MHz
TemperaturePeriod-Jitter 1σ
0
10
20
30
40
50
60
70
80
90
100
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitter1σPJ-1σ[psec]
Fig.34 16.9MHz
TemperatureDuty
45
46
47
48
49
50
51
52
53
54
55
-25 0 25 50 75 100
TemperatureT[ ]
DutyDuty[ ]
Fig.41 18.4MHz
TemperaturePeriod-Jitter 1σ
Fig.42 18.4MHz
TemperaturePeriod-Jitter MIN-MAX
Fig.43 Consumption current
(with maximum output load)
TemperatureConsumption current
0
10
20
30
40
50
60
70
80
90
100
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitter1σPJ-1σ[psec]
0
100
200
300
400
500
600
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitterMIN-MAX
PJ-MIN-MAX[psec]
0
10
20
30
40
50
-25 0 25 50 75 100
TemperatureT[ ]
Circuit CurrentIDD[mA]
Fig.36 16.9MHz
TemperaturePeriod-Jitter MIN-MAX
Fig.37 36.9MHz
TemperatureDuty
Fig.38 36.9MHz
TemperaturePeriod-Jitter 1σ
Fig.39 36.9MHz
TemperaturePeriod-Jitter MIN-MAX
45
46
47
48
49
50
51
52
53
54
55
-25 0 25 50 75 100
TemperatureT[ ]
Duty Duty[]
0
10
20
30
40
50
60
70
80
90
100
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitter1σPJ-1σ[psec]
0
100
200
300
400
500
600
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitterMIN-MAX
PJ-MIN-MAX[psec]
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
0
100
200
300
400
500
600
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitterMIN-MAX
PJ-MIN-MAX[psec]
VDD=2.9V
VDD=3.3V
VDD=3.7V
BU2285FV,BU2363FV
Technical Note
8/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
Reference data (BU2363FV basic data)
Fig.44 54MHz output waveform
VDD=3.3V, at CL=15pF
Fig.45 54MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.46 54MHz Spectrum
VDD=3.3V, at CL=15pF
3.0nsec / div
1.0V / div
500psec / div
1.0V / div
10KHz / div
10dB / div
Fig.47 27MHz output waveform
VDD=3.3V, at CL=15pF
Fig.48 27MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.49 27MHz Spectrum
VDD=3.3V, at CL=15pF
Fig.50 33.9MHz output waveform
VDD=3.3V, at CL=15pF
Fig.51 33.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.52 33.9MHz Spectrum
VDD=3.3V, at CL=15pF
Fig.53 16.9MHz output waveform
VDD=3.3V, at CL=15pF
Fig.54 16.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.55 16.9MHz Spectrum
VDD=3.3V, at CL=15pF
5.0nsec / div
1.0V / div
500psec / div
1.0V / div
10KHz / div
10dB / div
5.0nsec / div
1.0V / div
500psec / div
1.0V / div
10KHz / div
10dB / div
10.0nsec / div
1.0V / div
500psec / div
1.0V / div
10KHz / div
10dB / div
RBW=1KHz
VBW=100Hz
RBW=1KHz
VBW=100Hz
RBW=1KHz
VBW=100Hz
RBW=1KHz
VBW=100Hz
BU2285FV,BU2363FV
Technical Note
9/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
Fig.59 18.4MHz output waveform
VDD=3.3V, at CL=15pF
Fig.56 36.9MHz output waveform
VDD=3.3V, at CL=15pF
Fig.57 36.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.58 36.9MHz Spectrum
VDD=3.3V, at CL=15pF
Fig.60 18.4MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.61 18.4MHz Spectrum
VDD=3.3V, at CL=15pF
5.0nsec / div
1.0V / div
500psec / div
1.0V / div
10KHz / div
10dB / div
10.0nsec / div
1.0V / div
500psec / div
1.0V / div
10KHz / div
10dB / div
RBW=1KHz
VBW=100Hz
RBW=1KHz
VBW=100Hz
Reference data (BU2363FV basic data)
Reference data (BU2363FV Temperature and Supply voltage variations data)
Fig.67 27MHz
TemperaturePeriod-Jitter MIN-MAX
0
100
200
300
400
500
600
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitterMIN-MAX
PJ-MIN-MAX[psec]
Fig.63 54MHz
TemperaturePeriod-Jitter 1σ
0
10
20
30
40
50
60
70
80
90
100
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitter1σPJ-1σ[psec]
Fig.62 54MHz
TemperatureDuty
Fig.64 54MHz
TemperaturePeriod-Jitter MIN-MAX
Fig.65 27MHz
TemperatureDuty
Fig.66 27MHz
TemperaturePeriod-Jitter 1σ
45
46
47
48
49
50
51
52
53
54
55
-25 0 25 50 75 100
TemperatureT[ ]
Duty Duty[%]
0
100
200
300
400
500
600
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitterMIN-MAX
PJ-MIN-MAX[psec]
45
46
47
48
49
50
51
52
53
54
55
-25 0 25 50 75 100
TemperatureT[ ]
Duty Duty[%]
0
10
20
30
40
50
60
70
80
90
100
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitter1σPJ-1σ[psec]
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V VDD=3.3V
VDD=2.9V
VDD=3.7V
BU2285FV,BU2363FV
Technical Note
10/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
Reference data (BU2363FV Temperature and Supply voltage variations data)
Fig.77 18.4MHz
TemperatureDuty
45
46
47
48
49
50
51
52
53
54
55
-25 0 25 50 75 100
TemperatureT[]
DutyDuty[%]
Fig.76 36.9MHz
TemperaturePeriod-Jitter MIN-MAX
0
100
200
300
400
500
600
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitterMIN-MAX
PJ-MIN-MAX[psec]
Fig.75 36.9MHz
TemperaturePeriod-Jitter 1σ
0
10
20
30
40
50
60
70
80
90
100
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitter1σPJ-1σ[psec]
Fig.74 36.9MHz
TemperatureDuty
45
46
47
48
49
50
51
52
53
54
55
-25 0 25 50 75 100
TemperatureT[ ]
Duty Duty[%]
Fig.69 33.9MHz
TemperaturePeriod-Jitter 1σ
0
10
20
30
40
50
60
70
80
90
100
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitter1σPJ-1σ[psec]
Fig.68 33.9MHz
TemperatureDuty
45
46
47
48
49
50
51
52
53
54
55
-25 0 25 50 75 100
TemperatureT[]
DutyDuty[%]
Fig.73 16.9MHz
TemperaturePeriod-Jitter
0
100
200
300
400
500
600
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitterMIN-MAX
PJ-MIN-MAX[psec]
Fig.78 18.4MHz
TemperaturePeriod-Jitter 1σ
Fig.79 18.4MHz
TemperaturePeriod-Jitter
0
10
20
30
40
50
60
70
80
90
100
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitter1σPJ-1σ[psec]
Fig.70 33.9MHz
TemperaturePeriod-Jitter MIN-MAX
Fig.71 16.9MHz
TemperatureDuty
Fig.72 16.9MHz
TemperaturePeriod-Jitter 1σ
0
100
200
300
400
500
600
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitterMIN-MAX
PJ-MIN-MAX[psec]
45
46
47
48
49
50
51
52
53
54
55
-25 0 25 50 75 100
TemperatureT[]
DutyDuty[%]
0
10
20
30
40
50
60
70
80
90
100
-25 0 25 50 75 100
TemperatureT[]
Period-jitter1σPJ-1σ[psec]
VDD=2.9V
VDD=3.3V
VDD=3.7V VDD=3.3V
VDD=2.9V
VDD=3.7V VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V VDD=2.9V
VDD=3.3V
VDD=3.7V
VDD=3.3V
VDD=2.9V
VDD=3.7V
VDD=2.9V
VDD=3.3V
VDD=3.7V VDD=2.9V
VDD=3.3V
VDD=3.7V
0
100
200
300
400
500
600
-25 0 25 50 75 100
TemperatureT[ ]
Period-jitterMIN-MAX
PJ-MIN-MAX[psec]
VDD=3.3V
VDD=2.9V
VDD=3.7V
‘ vum zvss‘ J mm ”vs: 5 mm 5 mm 7Avss a mm 9 mum umc u (:va 12mm 21 mm 3 mm a mum no: m cm mm OJ C m m co m 'n < fig.82="" u="" snunmsz="" xtal="" osc="" .="" pm="" .7="" pllz="" o="" (cwwopm="" 43="" um="" 'yv-="" mama="" 44="" mw="" 20="" mm="" 2:="" ems="" 22="" mum="" 2‘="" oz="" 20="" ammo="" m="" mm:="" m="" dvss="" w="" dvss="" ‘5="" mm="" ‘s="" vmn="" u="" vssz="" a="" we="" fig="" 81="">g mmm n5 914mm) >[] ‘2 cm EN :m 2.14an. aaanaaMHxv >9; ma mmw PEN15432nMHx cm“ twu‘MHxv CTRLA CLKA CLKB L 33.8688MHZ 16.9344MHZ OPEN 36.8640MHZ 18.4320MHZ CTRLB CLKDAC L 13 SOOOMHZ OPEN 27.0000MHZ www.mhm.cum © 2009 ROHM Co.‘ le. Au nghls reserved. 11/16 2009.04 - Rev.A
BU2285FV,BU2363FV
Technical Note
11/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
Reference data (BU2363FV Temperature and Supply voltage variations data)
Block diagram, Pin assignment
BU2285FV
CTRLA CLKA CLKB
L 33.8688MHz 16.9344MHz
OPEN 36.8640MHz 18.4320MHz
CTRLB CLKDAC
L 13.5000MHz
OPEN 27.0000MHz
1:VDD1 24:CLK33M
2:VSS1 23:CTRLB
3:CLK16M 22:CLK54M
4:AVSS 21:OE
5:AVDD 20:CLKDAC
6:AVDD 19:DVDD
7:AVSS 18:DVSS
8:XTALIN 17:DVSS
9:XTALOUT 16:CLK27M
10:NC 15:VDD2
11:CTRLA 14:VSS2
12:CLKA 13:CLKB
BU2285FV
Fig.81
0
10
20
30
40
50
-25 0 25 50 75 100
TemperatureT[ ]
Circuit CurrentIDD[mA]
Fig.80 Consumption current
(with maximum output load)
TemperatureConsumption current
VDD=2.9V
VDD=3.3V
VDD=3.7V
Fig.82
XTAL
OSC PLL1 1/4
1/2
1/2
1/4
PLL2
1/8
1/8
8:XTALIN
9:XTALOUT
22:CLK54M
12:CLKA
16:CLK27M
21:OE
11:CTRA
(54.0000MHz)
(CTRLA=OPEN:36.8640MHz
CTRLA=L :33.8688MHz)
(CTRLA=OPEN:48.0kHz type
CTRLA=L :44.1kHz type)
20:CLKDAC
(CTRLB=OPEN:27.0000MHz
CTRLB=L :13.5000MHz)
(27.0000MHz)
23:CTRLB
(CTRLB=OPEN:27.0000MHz
CTRL=L :13.5000MHz)
24:CLK33M
(33.8688MHz )
3:CLK16M
(16.9344MHz)
13:CLKB
(CTRLA=OPEN:18.4320MHz
CTRLA=L :16.9344MHz)
|:||:| |:||:| |:||:| |:||:| |:||:| |:||:|
BU2285FV,BU2363FV
Technical Note
12/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
Block diagram, Pin assignment
BU2363FV
FSEL CLK768FS CLK384FS
L 33.8688MHz 16.9344MHz
OPEN 36.8640MHz 18.4320MHz
1:VDD2 16:OE
2:VSS2 15:CLK33M
3:CLK254M 14:FSEL
4:CLK27M 13:CLK16M
5:AVDD 12:DVDD
6:AVSS 11:DVSS
7:XTALIN 10:768FS1
8:XTALOUT 9:384FS2
BU2363FV
Fig.83
Fig.84
XTAL
OSC
XTALIN=36.8640MHz
1/8
1/4
MULTI-PLL
Technology
PLL2 1/4
1/8
1/2
(FSEL=OPEN:36.8640MHz
FSEL=L :33.8688MHz)
(FSEL=OPEN:18.4320MHz
FSEL=L :16.9344MHz)
7:XTALIN
8:XTALOUT
3:CLK54M
10:768FS1
16:OE
14:FSEL
(54.0000MHz)
(FSEL=OPEN:48.0kHz type
FSEL=L :44.1kHz type)
4:CLK27M
(27.0000MHz)
15:CLK33M
(33.8688MHz)
13:CLK16M
(16.9344MHz)
9:384FS2
BU2285FV,BU2363FV
Technical Note
13/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
1:VDD1 24:CLK33M 33.8688MHz
0.1uF
2:VSS1 23:CTRLB OPEN:27.0000MHz
L :13.5000MHz
16.9344MHz 3:CLK16M 22:CLK54M 54.0000MHz
4:AVSS 21:OE OPEN:Enable
0.1uF L :Disable
5:AVDD 20:CLKDAC 27.0000MHz
or 13.5000MHz
6:AVDD 19:DVDD
0.1uF 0.1uF
7:AVSS 18:DVSS
8:XTALIN 17:DVSS
9:XTALOUT 16:CLK27M 27.0000MHz
10:NC 15:VDD2
OPEN:48.0kHz type 0.1uF
L :44.1kHz type 11:CTRLA 14:VSS2
36.8640MHz 12:CLKA 13:CLKB 18.4320MHz
or 33.8688MHz or 16.9344MHz
BU2285FV
Example of application circuit
BU2285FV
Pin Function
PIN No. PIN Name PIN Function
1 VDD1 33MHz system power supply
2 VSS1 33MHz system GND
3 CLK16M 16.9344MHz output
4 AVSS Analog GND
5 AVDD Analog power supply
6 AVDD Analog power supply
7 AVSS Analog GND
8 XTALIN Crystal input terminal
9 XTALOUT Crystal output terminal
10 NC NC
11 CTRLA CLKA or B output selection (with pull-up)
12 CLKA CTRLA=OPEN:36.8640MHz, CTRLA=L:33.8688MHz
13 CLKB CTRLA=OPEN:18.4320MHz, CTRLA=L:16.9344MHz
14 VSS2 CLKA, B GND
15 VDD2 CLKA, B power supply
16 CLK27M 27.0000MHz output
17 DVSS Digital GND
18 DVSS Digital GND
19 DVDD Digital power supply
20 CLKDAC CTRLB=OPEN:27.0000MHz, CTRLB=L:13.5000MHz
21 OE Output enable (with pull-up), OPEN:enable, L:disable
22 CLK54M 54.0000MHz output
23 CTRLB CLKDAC output selection(with pull-up)
24 CLK33M 33.8688MHz output
Note) Basically, mount ICs to the printed circuit board for use.
(If the ICs are not mounted to the printed circuit board, the characteristics of ICs may not be fully demonstrated.)
Mount 0.1F capacitors in the vicinity of the IC PINs between 1PIN (VDD1) and 2PIN (VSS1), 4PIN (AVSS) and 5PIN (AVDD), 6PIN (AVDD) and 7PIN
(AVSS), 14PIN (VSS2) and 15PIN (VDD2), and 17PIN/18PIN (DVSS) and 19PIN (DVDD), respectively.
Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power supply and GND terminal.
For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2285FV from the printed circuit board or to insert a
capacitor (of 1 or less), which bypasses high frequency desired, between the power supply and the GND terminal.
Fig.85
BU2285FV,BU2363FV
Technical Note
14/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
OPEN:Enable
1:VDD2 16:OE L :Disable
0.1uF
2:VSS2 15:CLK33M 33.8688MHz
54.0000MHz 3:CLK254M 14:FSEL OPEN:48.0kHz type
L :44.1kHz type
27.0000MHz 4:CLK27M 13:CLK16M 16.9344MHz
5:AVDD 12:DVDD
0.1uF 0.1uF
6:AVSS 11:DVSS
7:XTALIN 10:768FS1 36.8640MHz
or 33.8688MHz
8:XTALOUT 9:384FS2 18.4320MHz
or 16.9344MHz
BU2363FV
Example of application circuit
BU2363FV
Pin Function
PIN No. PIN Name PIN Function
1 VDD2 27MHz, 54MHz power supply
2 VSS2 27MHz, 54MHzGND
3 CLK54M 54.0000MHz output
4 CLK27M 27.0000MHz output
5 AVDD Analog power supply
6 AVSS Analog GND
7 XTALIN Crystal input terminal
8 XTALOUT Crystal output terminal
9 384FS2 FSEL=OPEN:18.4320MHz, FSEL=L:16.9344MHz
10 768FS1 FSEL=OPEN:36.8640MHz, FSEL=L:33.8688MHz
11 DVSS Digital GND
12 DVDD Digital power supply
13 CLK16M 16.9344MHz output
14 FSEL
9, 10PIN output selection(with pull-up)
OPEN:18.4320MHz(9PIN), 36.8640MHz(10PIN)
L:16.9344MHz(9PIN), 33.8688MHz(10PIN)
15 CLK33M 33.8688MHz output
16 OE Output enable (with pull-up), OPEN:enable, L:disable
Note) Basically, mount ICs to the printed circuit board for use.
(If the ICs are not mounted to the printed circuit board, the characteristics of ICs may not be fully demonstrated.)
Mount 0.1F capacitors in the vicinity of the IC PINs between 1PIN (VDD2) and 2PIN (VSS2), 5PIN (AVDD) and 6PIN (AVSS), 11PIN (DVSS) and 12PIN
(DVDD), respectively.
Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power supply and GND terminal.
For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2363FV from the printed circuit board or to insert a
capacitor (of 1 or less), which bypasses high frequency desired, between the power supply and the GND terminal.
Even though we believe that the example of recommended circuit is worth of a recommendation, please be sure to thoroughly recheck the characteristics
before use.
Fig.86
BU2285FV,BU2363FV
Technical Note
15/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
Notes for use
(1) Absolute Maximum Ratings
An excess in the absolute maximum ratings, such as applied voltage (VDD or VIN), operating temperature range (Topr),
etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit.
If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical
safety measures including the use of fuses, etc.
(2) Recommended operating conditions
These conditions represent a range within which characteristics can be provided approximately as expected. The
electrical characteristics are guaranteed under the conditions of each parameter.
(3) Reverse connection of power supply connector
The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown
due to the reverse connection, such as mounting an external diode between the power supply and the IC’s power supply
terminal.
(4) Power supply line
Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines.
In this regard, for the digital block power supply and the analog block power supply, even though these power supplies has
the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus
suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the
wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At
the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be
used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.
(5) GND voltage
Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state.
Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.
(6) Short circuit between terminals and erroneous mounting
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between
the terminal and the power supply or the GND terminal, the ICs can break down.
(7) Operation in strong electromagnetic field
Be noted that using ICs in the strong electromagnetic field can malfunction them.
(8) Inspection with set PCB
On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress.
Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set
PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig.
After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition,
for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the
transportation and the storage of the set PCB.
(9) Input terminals
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the
input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a
voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to
the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is
applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of
electrical characteristics.
(10) Ground wiring pattern
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND
pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that
resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the
small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.
(11) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
mflfi NEH mflmu Mflfi 2“me wflwmu MEN MEN 9“me Mflwmw NMNM Mflfi mflwu \ Mflfi \ HHHHH HHHHHHHHHH NHNHH mm mm 1 E
BU2285FV,BU2363FV
Technical Note
16/16
www.rohm.com 2009.04 - Rev.
A
© 2009 ROHM Co., Ltd. All rights reserved.
Ordering part number
B U
2 2 8 5
F V - E 2
Part No. Part No.
2285
2363
Package
FV:SSOP-B24
FV:SSOP-B16
Packaging and forming specification
E2: Embossed tape and reel
(Unit : mm)
SSOP-B16
4.4±0.2
6.4±0.3
1.15±0.1
9
8
16
1
0.10
0.65
0.3Min.
5.0±0.2
0.22±0.1
0.15±0.1
0.1
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction
of feed
The direction is the 1pin of product is at the upper left when you hold
reel on the left hand and you pull out the tape on the right hand
2500pcs
E2
()
Direction of feed
Reel 1pin
(Unit : mm)
SSOP-B24
0.1
0.15 ± 0.1
1.15 ± 0.1
0.1
1
0.65
7.8 ± 0.2
(MAX 8.15 include BURR)
7.6 ± 0.3
5.6 ± 0.2
24
0.3Min.
12
13
0.22 ± 0.1
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction
of feed
The direction is the 1pin of product is at the upper left when you hold
reel on the left hand and you pull out the tape on the right hand
2000pcs
E2
()
Direction of feed
Reel 1pin
ROHI'I'I SEMICONDUCTOR EE El
R0039
A
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Notice
ROHM Customer Support System
http://www.rohm.com/contact/
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, commu-
nication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller,
fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of
any of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.

Products related to this Datasheet

IC CLOCK GEN DVD-VIDEO SSOP-B16
Available Quantity: 0
Unit Price: 0
IC CLK GEN DVD-AUD REF 24SSOP
Available Quantity: 0
Unit Price: 0