SI8410/20/21, SI8422/23 Datasheet by Silicon Labs

View All Related Products | Download PDF Datasheet
7i. SILICDN LABS
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV)
Data Sheet
Low-Power, Single and Dual-Channel Digital Isolators
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering sub-
stantial data rate, propagation delay, power, size, reliability, and external BOM advan-
tages when compared to legacy isolation technologies. The operating parameters of
these products remain stable across wide temperature ranges and throughout device
service life for ease of design and highly uniform performance. All device versions have
Schmitt trigger inputs for high noise immunity and only require VDD bypass capacitors.
Data rates up to 150 Mbps are supported, and all devices achieve worst-case propaga-
tion delays of less than 10 ns. Ordering options include a choice of isolation ratings (up
to 5 kV) and a selectable fail-safe operating mode to control the default output state dur-
ing power loss. All products are safety certified by UL, CSA, and VDE, and products in
wide-body packages support reinforced insulation withstanding up to 5 kVRMS.
Applications
Industrial automation systems
Medical electronics
Hybrid electric vehicles
Isolated switch mode supplies
Isolated ADC, DAC
Motor control
Power inverters
Communication systems
Safety Regulatory Approvals
UL 1577 recognized
Up to 5000 VRMS for 1 minute
CSA component notice 5A approval
IEC 60950-1, 61010-1, 60601-1
(reinforced insulation)
VDE certification conformity
IEC 60747-5-5 (VDE0884 Part 5)
EN60950-1 (reinforced insulation)
KEY FEATURES
High-speed operation
DC to 150 Mbps
No start-up initialization required
Wide Operating Supply Voltage:
2.6 – 5.5 V
Up to 5000 VRMS isolation
High electromagnetic immunity
Ultra low power (typical)
5 V Operation:
< 2.6 mA/channel at 1 Mbps
< 6.8 mA/channel at 100 Mbps
2.70 V Operation:
< 2.3 mA/channel at 1 Mbps
< 4.6 mA/channel at 100 Mbps
Schmitt trigger inputs
Selectable fail-safe mode
Default high or low output
Precise timing (typical)
11 ns propagation delay max
1.5 ns pulse width distortion
0.5 ns channel-channel skew
2 ns propagation delay skew
5 ns minimum pulse width
Transient immunity 45 kV/µs
AEC-Q100 qualification
Wide temperature range
–40 to 125 °C at 150 Mbps
RoHS compliant packages
SOIC-16 wide body
SOIC-8 narrow body
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4
1. Features List
High-speed operation
DC to 150 Mbps
No start-up initialization required
Wide Operating Supply Voltage:
2.6 – 5.5 V
Up to 5000 VRMS isolation
High electromagnetic immunity
Ultra low power (typical)
5 V Operation:
< 2.6 mA/channel at 1 Mbps
< 6.8 mA/channel at 100 Mbps
2.70 V Operation:
< 2.3 mA/channel at 1 Mbps
< 4.6 mA/channel at 100 Mbps
Schmitt trigger inputs
Selectable fail-safe mode
Default high or low output
Precise timing (typical)
11 ns propagation delay max
1.5 ns pulse width distortion
0.5 ns channel-channel skew
2 ns propagation delay skew
5 ns minimum pulse width
Transient immunity 45 kV/µs
AEC-Q100 qualification
Wide temperature range
–40 to 125 °C at 150 Mbps
RoHS compliant packages
SOIC-16 wide body
SOIC-8 narrow body
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Features List
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 1
2. Ordering Guide
Table 2.1. Ordering Guide1,2,3
Ordering Part
Number (OPN)
Number of
Inputs
VDD1 Side
Number of
Inputs
VDD2 Side
Maximum
Data Rate
(Mbps)
Default
Output
State
Isolation
Rating
Temp
Range
Package
Type
Si8422AB-D-IS 1 1 1 High 2.5 kVrms –40 to 125 °C NB SOIC-8
Si8422BB-D-IS 1 1 150 High
Si8423AB-D-IS 2 0 1 High
Si8423BB-D-IS 2 0 150 High
Si8410AD-D-IS41 0 1 Low 5.0 kVrms –40 to 125 °C WB SOIC-16
Si8410BD-D-IS41 0 150 Low
Si8420AD-D-IS42 0 1 Low
Si8420BD-D-IS42 0 150 Low
Si8421AD-D-IS41 1 1 Low
Si8421BD-D-IS41 1 150 Low
Si8422AD-D-IS 1 1 1 High
Si8422BD-D-IS 1 1 150 High
Si8423AD-D-IS 2 0 1 High
Si8423BD-D-IS 2 0 150 High
1. All devices >1 kVRMS are AEC-Q100 qualified.
2. “Si” and “SI” are used interchangeably.
3. All packages are RoHS-compliant with peak solder reflow temperatures of 260 °C according to the JEDEC industry standard clas-
sifications.
4. Refer to Si8410/20/21 data sheet for information regarding 2.5 kV rated versions of these products.
5. An "R" at the end of the part number denotes tape and reel packaging option.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Ordering Guide
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 2
(mm \ q J; W x w “M 1 H‘UW‘H ”\IPWW W M MW“ W
3. Functional Description
3.1 Theory of Operation
The operation of an Si84xx channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This
simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified
block diagram for a single Si84xx channel is shown in the figure below.
RF
OSCILLATOR
MODULATOR DEMODULATOR
A B
Semiconductor-
Based Isolation
Barrier
Transmitter Receiver
Figure 3.1. Simplified Channel Diagram
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the
Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that
decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying
scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to
magnetic fields. See the figure below for more details.
Input Signal
Output Signal
Modulation Signal
Figure 3.2. Modulation Scheme
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Functional Description
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 3
fl '54 A I20 onmej 10.0w 1 IMaIn Q Q lmnnnnns. j I21250n By
3.2 Eye Diagram
The figure below illustrates an eye-diagram taken on an Si8422. For the data source, the test used an Anritsu (MP1763C) Pulse Pattern
Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8422 were captured on an oscilloscope. The re-
sults illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The results also show that 2 ns pulse width
distortion and 350 ps peak jitter were exhibited.
Figure 3.3. Eye Diagram
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Functional Description
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 4
4. Device Operation
Device behavior during start-up, normal operation, and shutdown is shown in Figure 4.1 Device Behavior during Normal Operation on
page 6, where UVLO+ and UVLO- are the positive-going and negative-going thresholds respectively. Refer to the table below to
determine outputs when power supply (VDD) is not present.
Table 4.1. Si84xx Logic Operation Table
VI Input1,4 VDDI State1,2,3 VDDO State1,2,3 VO Output1,4 Comments
H P P H Normal operation.
L P P L
X5UP P H6 (Si8422/23)
L6 (Si8410/20/21)
Upon transition of VDDI from unpowered to powered,
VO returns to the same state as VI in less than 1 μs.
X5P UP Undetermined Upon transition of VDDO from unpowered to powered,
VO returns to the same state as VI within 1 μs.
Notes:
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals.
2. Powered (P) state is defined as 2.72.60 V < VDD < 5.5 V.
3. Unpowered (UP) state is defined as VDD = 0 V.
4. X = not applicable; H = Logic High; L = Logic Low.
5. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.
6. See Section 2. Ordering Guide for details. This is the selectable fail-safe operating mode (ordering option). Some devices have
default output state = H, and some have default output state = L, depending on the ordering part number (OPN).
4.1 Device Startup
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow
the states of inputs.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Device Operation
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 5
4.2 Under Voltage Lockout
Under Voltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below
its specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter
or exit UVLO independently. For example, Side A unconditionally enters UVLO when VDD1 falls below VDD1(UVLO–) and exits UVLO
when VDD1 rises above VDD1(UVLO+). Side B operates the same as Side A with respect to its VDD2 supply.
INPUT
VDD1
UVLO-
VDD2
UVLO+
UVLO-
UVLO+
OUTPUT
tSTART tSTART tSTART tPHL tPLH
tSD
Figure 4.1. Device Behavior during Normal Operation
4.3 Layout Recommendations
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the
safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance (creepage/clearance). If a component, such as a
digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large
high-voltage breakdown protection rating (commonly referred to as working voltage protection). Table 5.5 Regulatory Information1 on
page 20 and Table 5.6 Insulation and Safety-Related Specifications on page 21 detail the working voltage and creepage/clearance
capabilities of the Si84xx. These tables also detail the component standards (UL1577, IEC60747, CSA 5A), which are readily accepted
by certification bodies to provide proof for end-system specifications requirements. Refer to the end-system specification (61010-1,
60950-1, 60601-1, etc.) requirements before starting any design that uses a digital isolator.
4.3.1 Supply Bypass
The Si841x/2x family requires a 0.1 μF bypass capacitor between VDD1 and GND1 and VDD2 and GND2. The capacitor should be
placed as close as possible to the package. To enhance the robustness of a design, it is further recommended that the user also add 1
μF bypass capacitors and include 100 Ω resistors in series with the inputs and outputs if the system is excessively noisy.
4.3.2 Pin Connections
No connect pins are not internally connected. They can be left floating, tied to VDD, or tied to GND.
4.3.3 Output Pin Termination
The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of the on-
chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will
be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
4.4 Fail-Safe Operating Mode
Si84xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input supply is unpowered)
can either be a logic high or logic low when the output supply is powered. See Table 4.1 Si84xx Logic Operation Table on page 5 and
Section 2. Ordering Guide for more information.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Device Operation
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 6
m o so 25 A 25 E 2° 2 A av 20 E 15 E 5‘, 5 10 “V 2 ‘5 11v u E 10 5 2.7ov ° 2.7w 5 o u to 20 so no so so 70 so 90 tuonotzo 130 mu 150 0 D Ra M 1a 2a so 40 so so 70 on so 10011012013014015u ala te ( as) D.“ Rm (NINE) so so 25 25 A 5v < 20="" o="" .5="" 2="" 20="" w="" 5="" 15="" saw="" 3="" g="" 10="" e="" ‘5="" 5="" 5="" nu="" u="" ‘0="" o="" o="" 10="" 20="" so="" so="" 50="" so="" 70="" no="" 90="" 1on11n12n13nun15n="" 5="" dahraie‘mbr-s)="" m"="" o="" o="" m="" 20="" so="" on="" so="" so="" 70="" so="" 90100110120130140150="" daiaranmbps]="" so="" so="" 25="" 25="" a="" a="" 5v=""><>< 5="" 2o="" 5v="" 5="" 2o="" ‘="" :5-="" 15="" 33‘,="" e="" 15="" 3.3"="" 5="" 10="" 5="" 10="" 5="" 2.1w="" 5="" o="" o="" o="" 10="" 20="" so="" so="" 50="" so="" 70="" no="" 90="" 1on11n12n13nun15n="" o="" 10="" 20="" so="" so="" 50="" so="" 70="" no="" 90="" 1on11n12n13nun15n="" duh="" rule="" [mbps]="" duh="" rule="" [mbps]="">
4.5 Typical Performance Characteristics
The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer to Table 5.2 Electri-
cal Characteristics on page 9 through Table 5.4 Electrical Characteristics1 on page 17 for actual specification limits.
Figure 4.2. Si8410 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
Figure 4.3. Si8420 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
Figure 4.4. Si8421 Typical VDD1 or VDD2 Supply Current vs.
Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load)
Figure 4.5. Si8410 Typical VDD2 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
(15 pF Load)
Figure 4.6. Si8420 Typical VDD2 Supply Current vs. Data Rate
5, 3.3, and 2.70 V Operation
(15 pF Load)
Figure 4.7. Si8422 Typical VDD1 or VDD2 Supply Current vs.
Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load)
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Device Operation
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 7
Delay (In) 288 o Curr-m (MA) En‘ om so 25 2 ‘ ‘ 5V 5 20 ‘ 5V E 15 1.3V g 10 ‘ 3m, : ‘ “W 0 21w 5 . o o m 2n an 40 so so 70 an en 100110120130140150 0 1o 20 30 so 50 so 70 no 90 10n11n12n13n14n15n Data Rate (mm) / -40 -20 o 20 40 so so 100 Tmpenmm (Degreos C) 120 Dan Rule (Mbps)
Figure 4.8. Si8423 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
Figure 4.9. Si8423 Typical VDD2 Supply Current vs. Data Rate
5, 3.3, and 2.70 V Operation
(15 pF Load)
Figure 4.10. Propagation Delay
vs. Temperature
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Device Operation
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 8
5. Electrical Specifications
Table 5.1. Recommended Operating Conditions
Parameter Symbol Min Typ Max Unit
Ambient Operating Temperature1TA–40 25 125 C°
Supply Voltage VDD1 2.70 — 5.5 V
VDD2 2.70 — 5.5 V
Note:
1. The maximum ambient temperature is dependent upon data frequency, output loading, the number of operating channels, and
supply voltage.
Table 5.2. Electrical Characteristics
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 2.15 2.3 2.5 V
VDD Negative-Going Lockout
Hysteresis
VDDHYS 45 75 95 mV
Positive-Going Input Threshold VT+ All inputs rising 1.6 1.9 V
Negative-Going Input Threshold VT– All inputs falling 1.1 1.4 V
Input Hysteresis VHYS 0.40 0.45 0.50 V
High Level Input Voltage VIH 2.0 — V
Low Level Input Voltage VIL — 0.8 V
High Level Output Voltage VOH loh = –4 mA VDD1,VDD2
– 0.4
4.8 — V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Input Leakage Current IL ±10 μA
Output Impedance1ZO— 50 — Ω
DC Supply Current (All inputs 0 V or at Supply)
Si8410Ax, Bx
VDD1 All inputs 0 DC 1.0 1.5 mA
VDD2 All inputs 0 DC 3.0 1.5
VDD1 All inputs 1 DC 3.0 4.5
VDD2 All inputs 1 DC 1.0 1.5
Si8420Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
1.3
1.7
5.8
1.7
2.0
2.6
8.7
2.6
mA
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 9
Parameter Symbol Test Condition Min Typ Max Unit
Si8421Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
1.7
1.7
3.7
3.7
2.6
2.6
5.6
5.6
mA
Si8422Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
3.7
3.7
1.7
1.7
5.6
5.6
2.6
2.6
mA
Si8423Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
5.4
1.7
1.3
1.7
8.1
2.6
2.0
2.6
mA
1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs)
Si8410Ax, Bx
VDD1
VDD2
2.0
1.1
3.0
1.7
mA
Si8420Ax, Bx
VDD1
VDD2
3.5
1.9
5.3
2.9
mA
Si8421Ax, Bx
VDD1
VDD2
2.8
2.8
4.2
4.2
mA
Si8422Ax, Bx
VDD1
VDD2
2.8
2.8
4.2
4.2
mA
Si8423Ax, Bx
VDD1
VDD2
3.4
1.9
5.1
2.9
mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs)
Si8410Bx
VDD1
VDD2
2.1
1.5
3.1
2.1
mA
Si8420Bx
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 10
Parameter Symbol Test Condition Min Typ Max Unit
VDD1
VDD2
3.6
2.6
5.4
3.6
mA
Si8421Bx
VDD1
VDD2
3.2
3.2
4.5
4.5
mA
Si8422Bx
VDD1
VDD2
3.2
3.2
4.5
4.5
mA
Si8423Bx
VDD1
VDD2
3.4
2.5
5.1
3.5
mA
100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs)
Si8410Bx
VDD1
VDD2
2.1
5.0
3.1
6.3
mA
Si8420Bx
VDD1
VDD2
3.7
9.8
5.4
12.3
mA
Si8421Bx
VDD1
VDD2
6.8
6.8
8.5
8.5
mA
Si8422Bx
VDD1
VDD2
6.8
6.8
8.5
8.5
mA
Si8423Bx
VDD1
VDD2
3.4
9.2
5.1
11.5
mA
Timing Characteristics
Si841xAx, Si842xAx
Maximum Data Rate 0 1.0 Mbps
Minimum Pulse Width 250 ns
Propagation Delay tPHL, tPLH See Figure 5.1 Propagation
Delay Timing on page 12
35 ns
Pulse Width Distortion
|tPLH - tPHL|
PWD See Figure 5.1 Propagation
Delay Timing on page 12
25 ns
Propagation Delay Skew2tPSK(P-P) 40 ns
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 11
Parameter Symbol Test Condition Min Typ Max Unit
Channel-Channel Skew tPSK 35 ns
Si841xBx, Si842xBx
Maximum Data Rate 0 150 Mbps
Minimum Pulse Width 6.0 ns
Propagation Delay tPHL, tPLH See Figure 5.1 Propagation
Delay Timing on page 12
4.0 8.0 11 ns
Pulse Width Distortion
|tPLH - tPHL|
PWD See Figure 5.1 Propagation
Delay Timing on page 12
1.5 3.0 ns
Propagation Delay Skew2tPSK(P-P) 2.0 3.0 ns
Channel-Channel Skew tPSK 0.5 1.5 ns
All Models
Output Rise Time trCL = 15 pF 2.0 4.0 ns
Output Fall Time tfCL = 15 pF 2.0 4.0 ns
Peak Eye Diagram Jitter tJIT(PK) See Figure 3.3 Eye Diagram
on page 4
— 350 — ps
Common Mode Transient
Immunity
CMTI VI = VDD or 0 V 20 45 kV/μs
Start-up Time3tSU 15 40 μs
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same
supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Typical
Input
tPLH tPHL
Typical
Output
trtf
90%
10%
90%
10%
1.4 V
1.4 V
Figure 5.1. Propagation Delay Timing
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 12
Table 5.3. Electrical Characteristics
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 2.15 2.3 2.5 V
VDD Negative-Going Lockout
Hysteresis
VDDHYS 45 75 95 mV
Positive-Going Input Threshold VT+ All inputs rising 1.6 1.9 V
Negative-Going Input Threshold VT– All inputs falling 1.1 1.4 V
Input Hysteresis VHYS 0.40 0.45 0.50 V
High Level Input Voltage VIH 2.0 — V
Low Level Input Voltage VIL — 0.8 V
High Level Output Voltage VOH loh = –4 mA VDD1,VDD2
– 0.4
3.1 — V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Input Leakage Current IL ±10 μA
Output Impedance (Si8410/20)1ZO— 50 — Ω
DC Supply Current (All inputs 0 V or at supply)
Si8410Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
1.0
1.0
3.0
1.0
1.5
1.5
4.5
1.5
mA
Si8420Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
1.3
1.7
5.8
1.7
2.0
2.6
8.7
2.6
mA
Si8421Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
1.7
1.7
3.7
3.7
2.6
2.6
5.6
5.6
mA
Si8422Ax, Bx
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 13
Parameter Symbol Test Condition Min Typ Max Unit
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
3.7
3.7
1.7
1.7
5.6
5.6
2.6
2.6
mA
Si8423Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
5.4
1.7
1.3
1.7
8.1
2.6
2.0
2.6
mA
1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs)
Si8410Ax, Bx
VDD1
VDD2
2.0
1.1
3.0
1.7
mA
Si8420Ax, Bx
VDD1
VDD2
3.5
1.9
5.3
2.9
mA
Si8421Ax, Bx
VDD1
VDD2
2.8
2.8
4.2
4.2
mA
Si8422Ax, Bx
VDD1
VDD2
2.8
2.8
4.2
4.2
mA
Si8423Ax, Bx
VDD1
VDD2
3.4
1.9
5.1
2.9
mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs)
Si8410Bx
VDD1
VDD2
2.0
1.3
3.0
1.8
mA
Si8420Bx
VDD1
VDD2
3.5
2.3
5.3
3.2
mA
Si8421Bx
VDD1
VDD2
3.0
3.0
4.4
4.4
mA
Si8422Bx
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 14
Parameter Symbol Test Condition Min Typ Max Unit
VDD1
VDD2
3.0
3.0
4.4
4.4
mA
Si8423Bx
VDD1
VDD2
3.4
2.2
5.1
3.1
mA
100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs)
Si8410Bx
VDD1
VDD2
2.0
3.6
3.0
4.5
mA
Si8420Bx
VDD1
VDD2
4.5
7.0
5.3
8.8
mA
Si8421Bx
VDD1
VDD2
5.3
5.3
6.6
6.6
mA
Si8422Bx
VDD1
VDD2
5.3
5.3
6.6
6.6
mA
Si8423Bx
VDD1
VDD2
3.4
6.6
5.1
8.3
mA
Timing Characteristics
Si841xAx, Si842xAx
Maximum Data Rate 0 1.0 Mbps
Minimum Pulse Width 250 ns
Propagation Delay tPHL, tPLH See Figure 5.1 Propagation
Delay Timing on page 12
35 ns
Pulse Width Distortion
|tPLH – tPHL|
PWD See Figure 5.1 Propagation
Delay Timing on page 12
25 ns
Propagation Delay Skew2tPSK(P-P) 40 ns
Channel-Channel Skew tPSK 35 ns
Si841xBx, Si842xBx
Maximum Data Rate 0 150 Mbps
Minimum Pulse Width 6.0 ns
Propagation Delay tPHL, tPLH See Figure 5.1 Propagation
Delay Timing on page 12
4.0 8.0 11 ns
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 15
Parameter Symbol Test Condition Min Typ Max Unit
Pulse Width Distortion
|tPLH – tPHL|
PWD See Figure 5.1 Propagation
Delay Timing on page 12
1.5 3.0 ns
Propagation Delay Skew2tPSK(P-P) 2.0 3.0 ns
Channel-Channel Skew tPSK 0.5 1.5 ns
All Models
Output Rise Time trCL = 15 pF 2.0 4.0 ns
Output Fall Time tfCL = 15 pF 2.0 4.0 ns
Peak Eye Diagram Jitter tJIT(PK) See Figure 3.3 Eye Diagram
on page 4
— 350 — ps
Common Mode Transient
Immunity
CMTI VI = VDD or 0 V 20 45 kV/μs
Start-up Time3tSU 15 40 μs
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same
supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 16
Table 5.4. Electrical Characteristics1
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 2.15 2.3 2.5 V
VDD Negative-Going Lockout
Hysteresis
VDDHYS 45 75 95 mV
Positive-Going Input Threshold VT+ All inputs rising 1.6 1.9 V
Negative-Going Input Threshold VT– All inputs falling 1.1 1.4 V
Input Hysteresis VHYS 0.40 0.45 0.50 V
High Level Input Voltage VIH 2.0 — V
Low Level Input Voltage VIL — 0.8 V
High Level Output Voltage VOH loh = –4 mA VDD1,VDD2
– 0.4
2.3 — V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Input Leakage Current IL ±10 μA
Output Impedance2ZO— 50 — Ω
DC Supply Current (All inputs 0 V or at supply)
Si8410Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
1.0
1.0
3.0
1.0
1.5
1.5
4.5
1.5
mA
Si8420Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
1.3
1.7
5.8
1.7
2.0
2.6
8.7
2.6
mA
Si8421Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
1.7
1.7
3.7
3.7
2.6
2.6
5.6
5.6
mA
Si8422Ax, Bx
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 17
Parameter Symbol Test Condition Min Typ Max Unit
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
3.7
3.7
1.7
1.7
5.6
5.6
2.6
2.6
mA
Si8423Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
5.4
1.7
1.3
1.7
8.1
2.6
2.0
2.6
mA
1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs)
Si8410Ax, Bx
VDD1
VDD2
2.0
1.1
3.0
1.7
mA
Si8420Ax, Bx
VDD1
VDD2
3.5
1.9
5.3
2.9
mA
Si8421Ax, Bx
VDD1
VDD2
2.8
2.8
4.2
4.2
mA
Si8422Ax, Bx
VDD1
VDD2
2.8
2.8
4.2
4.2
mA
Si8423Ax, Bx
VDD1
VDD2
3.3
1.8
5.0
2.8
mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs)
Si8410Bx
VDD1
VDD2
2.0
1.1
3.0
1.7
mA
Si8420Bx
VDD1
VDD2
3.5
2.1
5.3
3.0
mA
Si8421Bx
VDD1
VDD2
2.9
2.9
4.3
4.3
mA
Si8422Bx
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 18
Parameter Symbol Test Condition Min Typ Max Unit
VDD1
VDD2
2.9
2.9
4.3
4.3
mA
Si8423Bx
VDD1
VDD2
3.4
2.0
5.1
2.9
mA
100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs)
Si8410Bx
VDD1
VDD2
2.0
2.0
3.0
3.0
mA
Si8420Bx
VDD1
VDD2
3.5
5.5
5.3
6.9
mA
Si8421Bx
VDD1
VDD2
4.6
4.6
5.8
5.8
mA
Si8422Bx
VDD1
VDD2
4.6
4.6
5.8
5.8
mA
Si8423Bx
VDD1
VDD2
3.4
5.2
5.1
6.5
mA
Timing Characteristics
Si841xAx, Si842xAx
Maximum Data Rate 0 1.0 Mbps
Minimum Pulse Width 250 ns
Propagation Delay tPHL, tPLH See Figure 5.1 Propagation
Delay Timing on page 12
35 ns
Pulse Width Distortion
|tPLH - tPHL|
PWD See Figure 5.1 Propagation
Delay Timing on page 12
25 ns
Propagation Delay Skew3tPSK(P-P) 40 ns
Channel-Channel Skew tPSK 35 ns
Si841xBx, Si842xBx
Maximum Data Rate 0 150 Mbps
Minimum Pulse Width 6.0 ns
Propagation Delay tPHL, tPLH See Figure 5.1 Propagation
Delay Timing on page 12
4.0 8.0 11 ns
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 19
Parameter Symbol Test Condition Min Typ Max Unit
Pulse Width Distortion
|tPLH - tPHL|
PWD See Figure 5.1 Propagation
Delay Timing on page 12
1.5 3.0 ns
Propagation Delay Skew3tPSK(P-P) 2.0 3.0 ns
Channel-Channel Skew tPSK 0.5 1.5 ns
All Models
Output Rise Time trCL = 15 pF 2.0 4.0 ns
Output Fall Time tfCL = 15 pF 2.0 4.0 ns
Peak Eye Diagram Jitter tJIT(PK) See Figure 3.3 Eye Diagram
on page 4
— 350 — ps
Common Mode Transient
Immunity
CMTI VI = VDD or 0 V 20 45 kV/μs
Start-up Time4tSU 15 40 μs
Notes:
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is constrained
to TA = 0 to 85 °C.
2. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same
supply voltages, load, and ambient temperature.
4. Start-up time is the time period from the application of power to valid data at the output.
Table 5.5. Regulatory Information1
CSA
The Si84xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.
61010-1: Up to 600 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage.
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.
60601-1: Up to 125 VRMS reinforced insulation working voltage; up to 380 VRMS basic insulation working voltage.
VDE
The Si84xx is certified according to IEC 60747-5-5. For more details, see File 5006301-4880-0001.
60747-5-5: Up to 891 Vpeak for basic insulation working voltage.
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.
UL
The Si84xx is certified under UL1577 component recognition program. For more details, see File E257455.
Rated up to 5000 VRMS isolation voltage for basic insulation.
Note:
1. Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec. Regulatory Certifi-
cations apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.
For more information, see Section 2. Ordering Guide.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 20
Table 5.6. Insulation and Safety-Related Specifications
Parameter Symbol Test Condi-
tion
Value Unit
WB SOIC-16 NB SOIC-8
Nominal Air Gap (Clearance)1L(IO1) 8.0 min 4.9 min mm
Nominal External Tracking (Creepage)1L(IO2) 8.0 min 4.01 min mm
Minimum Internal Gap (Internal Clearance) 0.014 0.008 mm
Tracking Resistance
(Proof Tracking Index)
PTI IEC60112 600 600 VRMS
Erosion Depth ED 0.019 0.040 mm
Resistance (Input-Output)2RIO 101,2 101,2 Ω
Capacitance (Input-Output)2CIO f = 1 MHz 2.0 1.0 pF
Input Capacitance3CI4.0 4.0 pF
Notes:
1. The values in this table correspond to the nominal creepage and clearance values as detailed in Section 7.1 Package Outline
(16-Pin Wide Body SOIC) and Section 7.2 Package Outline (8-Pin Narrow Body SOIC). VDE certifies the clearance and creepage
limits as 8.5 mm minimum for the WB SOIC-16 package and 4.7 mm minimum for the NB SOIC-8 package. UL does not impose
a clearance and creepage minimum for component level certifications. CSA certifies the clearance and creepage limits as 3.9 mm
minimum for the NB SOIC-8 and 7.6 mm minimum for the WB SOIC-16 package.
2. To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1–8 (1–4, NB SOIC-8) are shor-
ted together to form the first terminal and pins 9–16 (5–8, NB SOIC-8) are shorted together to form the second terminal. The
parameters are then measured between these two terminals.
3. Measured from input pin to ground.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 21
Table 5.7. IEC 60747-5-5 Insulation Characteristics for Si84xxxx1
Parameter Symbol Test Condi-
tion
Characteristic Unit
WB
SOIC-16
NB SOIC-8
Maximum Working Insulation Voltage VIORM 891 560 Vpeak
Input to Output Test Voltage Method b1
(VIORM x
1.875 = VPR,
100%
Production
Test, tm = 1
sec,
Partial Dis-
charge < 5
pC)
1671 1050
Transient Overvoltage VIOTM t = 60 sec 6000 4000 Vpeak
Pollution Degree
(DIN VDE 0110, Table 1)
2 2
Insulation Resistance at TS, VIO = 500 V RS>109>109Ω
Note:
1. Maintenance of the safety data is ensured by protective circuits. The Si84xx provides a climate classification of 40/125/21.
Table 5.8. IEC Safety Limiting Values1
Parameter Symbol Test Condi-
tion
Max Unit
WB SOIC-16 NB SOIC-8
Case Temperature TS150 150 °C
Safety Input, Output, or Supply Current ISθJA = 140
°C/W (NB
SOIC-8), 100
°C (WB SO-
IC-16),
VI = 5.5 V, TJ
= 150 °C, TA
= 25 °C
220 160 mA
Device Power Dissipation2PD150 150 mW
Notes:
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 5.2 (WB SOIC-16) Thermal Derat-
ing Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-5 on page 23 and Figure 5.3 (NB SOIC-8) Thermal Derating Curve, Dependence
of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-5 on page 23.
2. The Si84xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 °C, CL = 15 pF, input a 150 Mbps 50% duty cycle square wave.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 22
100 150 perature (“0) 100 150 perature (“0)
Table 5.9. Thermal Characteristics
Parameter Symbol WB SOIC-16 NB SOIC-8 Unit
IC Junction-to-Air Thermal Resistance θJA 100 140 °C/W
0 20015010050
500
250
125
0
Case Temperature (ºC)
Safety-Limiting Values (mA)
460
375
VDD1, VDD2 = 2.70 V
VDD1, VDD2 = 3.3 V
VDD1, VDD2 = 5.5 V
360
220
Figure 5.2. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-5
0 20015010050
400
200
100
0
Case Temperature (ºC)
Safety-Limiting Values (mA)
320
300
VDD1, VDD2 = 2.70 V
VDD1, VDD2 = 3.3 V
VDD1, VDD2 = 5.5 V
270
160
Figure 5.3. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-5
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 23
Table 5.10. Absolute Maximum Ratings1
Parameter Symbol Min Typ Max Unit
Storage Temperature2TSTG –65 150 C°
Operating Temperature TA–40 125 C°
Junction Temperature TJ 150 °C
Supply Voltage VDD1, VDD2 –0.5 — 6.0 V
Input Voltage VI–0.5 — VDD + 0.5 V
Output Voltage VO–0.5 — VDD + 0.5 V
Output Current Drive Channel IO 10 mA
Lead Solder Temperature (10 s) 260
Maximum Isolation Voltage (1 s) NB SOIC-8 4500 VRMS
Maximum Isolation Voltage (1 s) WB SO-
IC-16
6500 VRMS
Notes:
1. Permanent device damage may occur if the above absolute maximum ratings are exceeded. Functional operation should be re-
stricted to conditions as specified in the operational sections of this data sheet.
2. VDE certifies storage temperature from –40 to 150 °C.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Electrical Specifications
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 24
E. j j j j j E. j E j E 3 EM -|:H>~3 cw 4:H>»2 j E j E j E0 Kw -|:H>fl
6. Pin Descriptions
6.1 Pin Descriptions (Wide-Body SOIC)
GND1
NC
A1
VDD1
GND2
B1
NC
GND2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
NC
GND1
NC
NC
VDD2
NC
Si8410 WB SOIC-16
NC
NC
GND1
A2
NC
A1
VDD1
GND2
B1
NC
B2
GND2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
NC
GND1
NC
NC
VDD2
NC
Si8420/23 WB SOIC-16
GND1
A2
NC
A1
VDD1
GND2
B1
NC
B2
GND2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
NC
GND1
NC
NC
VDD2
NC
Si8421 WB SOIC-16
GND1
A2
NC
A1
VDD1
GND2
B1
NC
B2
GND2
I
s
o
l
a
t
i
o
n
RF
XMITR
NC
GND1
NC
NC
VDD2
NC
Si8422 WB SOIC-16
RF
RCVR
RF
XMITR
RF
XMITR
RF
RCVR
Figure 6.1. Wide-Body SOIC
Table 6.1. Pin Descriptions
Name SOIC-16 Pin#
Si8410
SOIC-16 Pin#
Si842x
Type Description
GND1 1 1 Ground Side 1 ground.
NC12, 5, 6, 8,10,
11, 12, 15
2, 6, 8,10,
11, 15
No Connect NC
VDD1 3 3 Supply Side 1 power supply.
A1 4 4 Digital I/O Side 1 digital input or output.
A2 NC 5 Digital I/O Side 1 digital input or output.
GND1 7 7 Ground Side 1 ground.
GND2 9 9 Ground Side 2 ground.
B2 NC 12 Digital I/O Side 2 digital input or output.
B1 13 13 Digital I/O Side 2 digital input or output.
VDD2 14 14 Supply Side 2 power supply.
GND2 16 16 Ground Side 2 ground.
Note:
1. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Pin Descriptions
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 25
6.2 Pin Descriptions (Narrow-Body SOIC)
I
s
o
l
a
t
i
o
n
VDD1 VDD2
A1 B1
A2 B2
RF
XMITR
RF
RCVR
GND1 GND2
Si8422 NB SOIC-8
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
I
s
o
l
a
t
i
o
n
VDD1 VDD2
A1 B1
RF
XMITR
RF
RCVR
A2 B2
RF
XMITR
RF
RCVR
GND1 GND2
Si8423 NB SOIC-8
Figure 6.2. Narrow-Body SOIC
Name SOIC-8 Pin#
Si842x
Type Description
VDD1 1 Supply Side 1 power supply.
GND1 4 Ground Side 1 ground.
A1 2 Digital I/O Side 1 digital input or output.
A2 3 Digital I/O Side 1 digital input or output.
B1 7 Digital I/O Side 2 digital input or output.
B2 6 Digital I/O Side 2 digital input or output.
VDD2 8 Supply Side 2 power supply.
GND2 5 Ground Side 2 ground.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Pin Descriptions
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 26
l—4—D—. To HHHHEFIHHH I6 \I ” J— « nx45'J—‘(\ /\_ CE?! MIT SEA11NG DETAIL F PLANE DETAIL F
7. Package Outlines
7.1 Package Outline (16-Pin Wide Body SOIC)
The figure below illustrates the package details for the Si84xx Digital Isolator. The table below lists the values for the dimensions shown
in the illustration.
Figure 7.1. 16-Pin Wide Body SOIC
Table 7.1. Package Diagram Dimensions
Symbol Millimeters
Min Max
A — 2.65
A1 0.1 0.3
D 10.3 BSC
E 10.3 BSC
E1 7.5 BSC
b 0.31 0.51
c 0.20 0.33
e 1.27 BSC
h 0.25 0.75
L 0.4 1.27
θ 0° 7°
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Package Outlines
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 27
PIN 1 INDICATOR HEP H E El PARTING LINE EEHE _ E’ELL DETAIL A TOP VIEW B® IE +8 . A A2 hx45 ——1 '4» c ‘ I I;LI;LI;LU__ . .1 7 x a .10 AI SEA11NG PLANE rCE\ D SEE DETAIL A SIDE VIEW END VIEW
7.2 Package Outline (8-Pin Narrow Body SOIC)
The figure below illustrates the package details for the Si84xx. The table below lists the values for the dimensions shown in the illustra-
tion.
Figure 7.2. 8-pin Small Outline Integrated Circuit (SOIC) Package
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Package Outlines
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 28
Table 7.2. Package Diagram Dimensions
Symbol Millimeters
Min Max
A 1.35 1.75
A1 0.10 0.25
A2 1.40 REF 1.55 REF
B 0.33 0.51
C 0.19 0.25
D 4.80 5.00
E 3.80 4.00
e 1.27 BSC
H 5.80 6.20
h 0.25 0.50
L 0.40 1.27
0° 8°
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Package Outlines
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 29
8. Land Patterns
8.1 Land Pattern (16-Pin Wide-Body SOIC)
The figure below illustrates the recommended land pattern details for the Si84xx in a 16-pin wide-body SOIC. The table below lists the
values for the dimensions shown in the illustration.
Figure 8.1. 16-Pin SOIC Land Pattern
Table 8.1. 16-Pin Wide Body SOIC Land Pattern Dimensions
Dimension Feature (mm)
C1 Pad Column Spacing 9.40
E Pad Row Pitch 1.27
X1 Pad Width 0.60
Y1 Pad Length 1.90
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protru-
sion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Land Patterns
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 30
LIE v.33 Ly
8.2 Land Pattern (8-Pin Narrow Body SOIC)
The figure below illustrates the recommended land pattern details for the Si84xx in an 8-pin narrow-body SOIC. The table below lists
the values for the dimensions shown in the illustration.
Figure 8.2. PCB Land Pattern: 8-Pin Narrow Body SOIC
Table 8.2. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC)
Dimension Feature (mm)
C1 Pad Column Spacing 5.40
E Pad Row Pitch 1.27
X1 Pad Width 0.60
Y1 Pad Length 1.55
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Land Patterns
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 31
9. Top Markings
9.1 Top Marking (16-Pin Wide Body SOIC)
Si84XYSV
YYWWTTTTTT
TW
e4
Figure 9.1. Isolator Top Marking
Table 9.1. Top Marking Explanation
Line 1 Marking: Base Part Number
Ordering Options
(See 2. Ordering Guide for more information).
Si84 = Isolator product series
XY = Channel Configuration
X = # of data channels (2, 1)
Y = # of reverse channels (1, 0)1,2
S = Speed Grade
A = 1 Mbps
B = 150 Mbps
V = Insulation rating
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5 kV
Line 2 Marking: YY = Year
WW = Workweek
Assigned by assembly subcontractor. Corresponds to the year
and workweek of the mold date.
TTTTTT = Mfg Code Manufacturing code from assembly house.
Line 3 Marking: Circle = 1.7 mm Diameter
(Center-Justified)
“e4” Pb-Free Symbol.
Country of Origin ISO Code Abbreviation TW = Taiwan.
Notes:
1. The Si8422 has one reverse channel.
2. The Si8423 has zero reverse channels.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Top Markings
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 32
i84X YW
9.2 Top Marking (8-Pin Narrow-Body SOIC)
Si84XYSV
YYWWRF
AIXX
e3
Figure 9.2. Isolator Top Marking
Table 9.2. Top Marking Explanation
Line 1 Marking: Base Part Number
Ordering Options
(See 2. Ordering Guide for more information).
Si84 = Isolator product series
XY = Channel Configuration
X = # of data channels (2, 1)
Y = # of reverse channels (1, 0)1,2
S = Speed Grade
A = 1 Mbps
B = 150 Mbps
V = Insulation rating
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5 kV
Line 2 Marking: YY = Year
WW = Workweek
Assigned by assembly subcontractor. Corresponds to the year
and workweek of the mold date.
R = Product (OPN) Revision
F = Wafer Fab
Line 3 Marking: Circle = 1.1 mm Diameter
Left-Justified
“e3” Pb-Free Symbol.
First two characters of the manufacturing code.
A = Assembly Site
I = Internal Code
XX = Serial Lot Number
Last four characters of the manufacturing code.
Notes:
1. The Si8422 has one reverse channel.
2. The Si8423 has zero reverse channels.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Top Markings
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 33
10. Document Change List
10.1 Revision 0.1
Initial release.
10.2 Revision 0.1 to Revision 1.0
Updated features list.
Updated transient immunity.
Removed block diagram from front page.
Added chip graphics on front page.
Added Peak Eye Diagram jitter in Table 5.2 Electrical Characteristics on page 9 through Table 5.4 Electrical Characteristics1 on
page 17.
Updated transient immunity
Moved Table 4.1 Si84xx Logic Operation Table on page 5 to Section 4. Device Operation.
Added Section 4. Device Operation.
Added Section 4.4 Fail-Safe Operating Mode.
Moved Section 4.5 Typical Performance Characteristics.
Deleted RF Radiated Emissions section.
Deleted RF Magnetic and Common-Mode Transient Immunity section.
Updated MSL rating to MSL2A.
10.3 Revision 1.0 to Revision 1.1
Numerous text edits.
Added table notes to Table 9.1 Top Marking Explanation on page 32 and Table 9.2 Top Marking Explanation on page 33.
10.4 Revision 1.1 to Revision 1.2
Updated Timing Characteristics in Table 5.2 Electrical Characteristics on page 9 through Table 5.4 Electrical Characteristics1 on
page 17.
10.5 Revision 1.2 to Revision 1.3
Added references to AEC-Q100 qualified throughout.
Changed all 60747-5-2 references to 60747-5-5.
Updated Table 2.1 Ordering Guide1,2,3 on page 2.
Added table notes 1 and 2.
Removed references to moisture sensitivity levels.
Added Revision D ordering information.
Removed older revisions.
Updated Section 9.1 Top Marking (16-Pin Wide Body SOIC).
10.6 Revision 1.3 to Revision 1.4
September 16, 2016
Updated data sheet format.
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet
Document Change List
silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 34
Table of Contents
1. Features List ...............................1
2. Ordering Guide ..............................2
3. Functional Description............................3
3.1 Theory of Operation ............................3
3.2 Eye Diagram ..............................4
4. Device Operation ..............................5
4.1 Device Startup .............................5
4.2 Under Voltage Lockout ...........................6
4.3 Layout Recommendations..........................6
4.3.1 Supply Bypass .............................6
4.3.2 Pin Connections ............................6
4.3.3 Output Pin Termination ..........................6
4.4 Fail-Safe Operating Mode ..........................6
4.5 Typical Performance Characteristics ......................7
5. Electrical Specifications ...........................9
6. Pin Descriptions ............................. 25
6.1 Pin Descriptions (Wide-Body SOIC) ......................25
6.2 Pin Descriptions (Narrow-Body SOIC) ......................26
7. Package Outlines ............................. 27
7.1 Package Outline (16-Pin Wide Body SOIC) ....................27
7.2 Package Outline (8-Pin Narrow Body SOIC)....................28
8. Land Patterns .............................. 30
8.1 Land Pattern (16-Pin Wide-Body SOIC) .....................30
8.2 Land Pattern (8-Pin Narrow Body SOIC) .....................31
9. Top Markings .............................. 32
9.1 Top Marking (16-Pin Wide Body SOIC) .....................32
9.2 Top Marking (8-Pin Narrow-Body SOIC) .....................33
10. Document Change List .......................... 34
10.1 Revision 0.1 ..............................34
10.2 Revision 0.1 to Revision 1.0.........................34
10.3 Revision 1.0 to Revision 1.1.........................34
10.4 Revision 1.1 to Revision 1.2.........................34
10.5 Revision 1.2 to Revision 1.3.........................34
10.6 Revision 1.3 to Revision 1.4.........................34
Table of Contents 35
SILICON LABS
http://www.silabs.com
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
Smart.
Connected.
Energy-Friendly.
Products
www.silabs.com/products Quality
www.silabs.com/quality Support and Community
community.silabs.com
Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of
Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or
brand names mentioned herein are trademarks of their respective holders.

Products related to this Datasheet

DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 2.18
DGTL ISO 5000VRMS 1CH GP 16SOIC
Available Quantity: 0
Unit Price: 1.89041
DGTL ISO 5000VRMS 1CH GP 16SOIC
Available Quantity: 0
Unit Price: 2.74769
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 1.93438
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 2.81363
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 1.8699
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 2.81363
DGTL ISO 2500VRMS 2CH GP 8SOIC
Available Quantity: 0
Unit Price: 1.32548
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 1.93438
DGTL ISO 2500VRMS 2CH GP 8SOIC
Available Quantity: 0
Unit Price: 2.13221
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 2.81363
DGTL ISO 2500VRMS 2CH GP 8SOIC
Available Quantity: 0
Unit Price: 1.32548
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 1.93438
DGTL ISO 2500VRMS 2CH GP 8SOIC
Available Quantity: 0
Unit Price: 2.13221
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 2.62606
DGTL ISO 5000VRMS 1CH GP 16SOIC
Available Quantity: 0
Unit Price: 2.04457
DGTL ISO 5000VRMS 1CH GP 16SOIC
Available Quantity: 0
Unit Price: 2.97543
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 2.09935
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 3.01217
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 2.18
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 3.12
DGTL ISO 2500VRMS 2CH GP 8SOIC
Available Quantity: 0
Unit Price: 1.66
DGTL ISO 2500VRMS 2CH GP 8SOIC
Available Quantity: 0
Unit Price: 2.9
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 2.18
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 3.81
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 2.18
DGTL ISO 2500VRMS 2CH GP 8SOIC
Available Quantity: 0
Unit Price: 2.37
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 3.81
DGTL ISO 5000VRMS 2CH GP 16SOIC
Available Quantity: 0
Unit Price: 2.18
DGTL ISO 2500VRMS 2CH GP 8SOIC
Available Quantity: 0
Unit Price: 2.37