TISP4yyyM3BJ Datasheet by Bourns Inc.

View All Related Products | Download PDF Datasheet
V V ‘4070 55 70 ‘4050 65 an ‘4095 75 95 ‘41 1 5 90 1 1 5 ‘41 25 1 an 1 25 ‘4145 120 145 ‘4165 1 a5 1 s5 ‘41 50 1 45 1 an T ‘4200 1 55 200 ‘4220 1 an 220 ‘4240 180 240 3| Z ‘4250 1 an 250 ‘4265 200 255 ‘4290 220 290 ‘4300 230 300 ‘4350 275 350 ‘4360 290 350 ‘4395 320 395 ‘4400 300 400 Insert xxx vame corresponding to prolectlon vonages of 070‘ mm, 095‘ 115, etc. A—
TISP4xxxM3BJ Overvoltage Protector Series
TISP4070M3BJ THRU TISP4115M3BJ,
TISP4125M3BJ THRU TISP4220M3BJ,
TISP4240M3BJ THRU TISP4400M3BJ
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
ITU-T K.20/21/44/45 rating ............... 4 kV 10/700, 100 A 5/310
Ion-Implanted Breakdown Region
Precise and Stable Voltage
Low Voltage Overshoot under Surge
These devices are designed to limit overvoltages on the telephone
line. Overvoltages are normally caused by a.c. power system or
lightning flash disturbances which are induced or conducted on to
the telephone line. A single device provides 2-point protection
and is typically used for the protection of 2-wire telecommunication equipment (e.g. between the Ring and Tip wires for telephones and
modems). Combinations of devices can be used for multi-point protection (e.g. 3-point protection between Ring, Tip and Ground).
The protector consists of a symmetrical voltage-triggered bidirectional thyristor. Overvoltages are initially clipped by breakdown clamping until
the voltage rises to the breakover level, which causes the device to crowbar into a low-voltage on state. This low-voltage on state causes the
current resulting from the overvoltage to be safely diverted through the device. The high crowbar holding current helps prevent d.c. latchup as
the diverted current subsides.
Device VDRM
V
V(BO)
V
‘4070 58 70
‘4080 65 80
‘4095 75 95
‘4115 90 115
‘4125 100 125
‘4145 120 145
‘4165 135 165
‘4180 145 180
‘4200 155 200
‘4220 160 220
‘4240 180 240
‘4250 190 250
‘4265 200 265
‘4290 220 290
‘4300 230 300
‘4350 275 350
‘4360 290 360
‘4395 320 395
‘4400 300 400
Low Differential Capacitance .................................... 39 pF max.
...............................................UL Recognized Component
12
T(A)
R(B)
MDXXBGE
T
R
SD4XAA
T
erminals T and R correspond to the
alternative line designators of A and B
Wave Shape StandardITSP
A
2/10 µs GR-1089-CORE 300
8/20 µs IEC 61000-4-5 220
10/160 µs FCC Part 68 120
10/700 µs ITU-T K.20/21/45 100
10/560 µs FCC Part 68 75
10/1000 µs GR-1089-CORE 50
DevicePackage Carrier
TISP4xxxM3BJBJ (J-Bend DO-214AA/SMB)Embossed Tape Reeled
TISP4xxxM3BJR-S
Insert xxx value corresponding to protection voltages of 070, 080, 095, 115, etc.
Order As
SMBJ Package (Top View)
Device Symbol
Description
How to Order
Agency Recognition
Description
UL File Number: E215609
NOVEMBER 1997 – REVISED JULY 2019
*RoHS Directive 2015/863, Mar 31, 2015 and Annex.
Specifications are subject to change without notice.
Users should verify actual device performance in their
specific applications.
The products described herein and this document are
subject to specific legal disclaimers as set forth on the last
page of this document, and at www.bourns.com/docs/
legal/disclaimer.pdf.
WARNING Cancer and Reproductive Harm
www.P65Warnings.ca.gov
BOURNS Rating Symbol Value Unit ‘4070 :50 NorHepetmve peak unrstale pu1se current (see Mates 2 a and 41 2/10 us (GRJOBQVCORE, 2/10 us vohage wave snap 3/20 us (IEC 610005475,comb1nauon wave genevato 10/100 us (FCC Pan 68 10/150 us vphage wave sh 5/200 us (qu 0433, 10/700 us vohage wave strap 0.2/310 us 113124, 0.5/700 0s vphage wave shape) 5/310 p (17077 K.20/21/45, KAA 10/700 us vphage 5/310 us {FTZ R12 10/700 us votage wave shape) 10/560 us was Pan 68 10/500 us vphage wave sh 10/1000 us 113 FM UflngORE‘ 10/1000 0s vphage w Nondepeuwe peak onrstale current tsee Notes 2, 3 and 5) 20 ms (50 Hz)M|s1new 30 16 7 ms 160 Hz) luH sme 32 1000 s 50 Hz/60 Hz ac. 2.1 1mtra1 rate of use at unrslzte current Exponentra1 current ramp Maxvnum ramp va1ue < 100="" a="" d1t/dt="" 300="" alps="" junwon="" temperature="" t="" j="" 540(0="" +150="" "0="" s1prage1erhpera1ure="" range="" 75,9="" 7050:="" +150="" "0="" notes:="" 1="" see="" applmallons="" intermatrph="" and="" frgure="" 11="" tun/phage="" values="" 21="" lower="" temperamres.="" \771112hy="" lhetlsp="" the="" surge="" may="" see="" applmallo="" ela/jesd51="" ,="" 1rach="" w1dms.="" apove="" 25="" ‘70="">
The TISP4xxxM3BJ range consists of nineteen voltage variants to meet various maximum system voltage levels (58 V to 320 V). They are
guaranteed to voltage limit and withstand the listed international lightning surges in both polarities. These medium (M) current protection
devices are in a plastic package SMBJ (JEDEC DO-214AA with J-bend leads) and supplied in embossed tape reel pack. For alternative
voltage and holding current values, consult the factory. For higher rated impulse currents in the SMB package, the 100 A 10/1000
TISP4xxxH3BJ series is available.
TISP4xxxM3BJ Overvoltage Protector Series
RatingSymbol Value Unit
Repetitive peak off-state voltage, (see Note 1)
‘4070
‘4080
‘4095
‘4115
‘4125
‘4145
‘4165
‘4180
‘4200
‘4220
‘4240
‘4250
‘4265
‘4290
‘4300
‘4350
‘4360
‘4395
‘4400
VDRM
±58
±65
±75
±90
±100
±120
±135
±145
±155
±160
±180
±190
±200
±220
±230
±275
±290
±320
±300
V
Non-repetitive peak on-state pulse current (see Notes 2, 3 and 4)
ITSPA
2/10 µs (GR-1089-CORE, 2/10 µs voltage wave shape) 300
8/20 µs (IEC 61000-4-5, combination wave generator, 1.2/50 voltage, 8/20 current) 220
10/160 µs (FCC Part 68, 10/160µs voltage wave shape) 120
5/200 µs (VDE 0433, 10/700 µs voltage wave shape) 110
0.2/310 µs (I3124, 0.5/700 µs voltage wave shape) 100
5/310 µ(ITU-T K.20/21/45, K.44 10/700 µs voltage wave shape) 100
5/310 µs (FTZ R12, 10/700 µs voltage wave shape) 100
10/560 µs (FCC Part 68, 10/560µs voltage wave shape) 75
10/1000 µs (GR-1089-CORE, 10/1000 µs voltage wave shape) 50
Non-repetitive peak on-state current (see Notes 2, 3 and 5)
ITSM
30
32
2.1
A
20 ms (50 Hz) full sine wave
16.7 ms (60 Hz) full sine wave
1000 s 50 Hz/60 Hz a.c.
Initial rate of rise of on-state current, Exponential current ramp, Maximum ramp value <100 A diT/dt 300 A/µs
Junction temperature TJ-40 to +150 °C
Storage temperature range Tstg-65 to +150 °C
NOTES: 1. See Applications Information and Figure 11 for voltage values at lower temperatures.
2. Initially, the TISP4xxxM3BJ must be in thermal equilibrium with T
J=25°C.
3. The surge may be repeated after the TISP4xxxM3BJ returns to its initial conditions.
4. See Applications Information and Figure 12 for current ratings at other temperatures.
5. EIA/JESD51-2 environment and EIA/JESD51-3 PCB with standard footprint dimensions connected with 5 A rated printed wiring
track widths. See Figure 9 for the current ratings at other durations. Derate current values at -0.61 %/°C for ambient temperatures
above 25 °C.
Description (Continued)
Absolute Maximum Ratings, TA = 25 °C (Unless Otherwise Noted)
NOVEMBER 1997 – REVISED JULY 2019
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.
BOURNS Parameter Test Cmdmms Min Typ Max Unit Repetmve peak an: TA: 25 c :5 TA : 55 c :10 ‘4070 :70 ‘4030 :30 ‘4095 :05 ‘4115 :115 ‘4125 :125 ‘4145 :145 ‘4165 :165 ‘4130 :150 ‘4200 :200 ‘4220 :220 ‘4240 :240 ‘4250 :250 ‘4265 :265 ‘4290 :290 ‘4300 :300 ‘4350 :350 ‘4360 :360 ‘4395 :395 ‘4400 :400 ‘4070 :73 :aa :102 :122 :132 £51 £71 :156 :207 :227 :247 :257 :272 :295 :305 :359 :370 :405 :410 050, Ereakover cmrem dv/dt : :250 V/ms, RSOURCE: 300 :0 15 :Ufi A VT Oursme vo‘tage | 5 A‘ (W : 100 us :3 v IH Hammg cuvrent \T 7 5 A‘ m/a: : 4730 mA/ms :0.15 :035 A Crmm‘ rate of nse of offrstate voMage ‘0 Oflrstate current VD : :50 v TA: 55 c :10 A
TISP4xxxM3BJ Overvoltage Protector Series
Parameter Test Conditions Min Typ Max Unit
IDRM
Repetitive peak off-
state current VD = VDRM
TA = 25 °C
TA = 85 °C
±5
±10 μA
V(BO) Breakover voltage dv/dt = ±250 V/ms, R SOURCE =300 Ω
‘4070
‘4080
‘4095
‘4115
‘4125
‘4145
‘4165
‘4180
‘4200
‘4220
‘4240
‘4250
‘4265
‘4290
‘4300
‘4350
‘4360
‘4395
‘4400
±70
±80
±95
±115
±125
±145
±165
±180
±200
±220
±240
±250
±265
±290
±300
±350
±360
±395
±400
V
V(BO)
Impulse breakover
voltage
dv/dt ±1000 V/μs, Linear voltage ramp,
Maximum ramp value =±500 V
di/dt = ±20 A/μs, Linear current ramp,
Maximum ramp value =±10 A
‘4070
‘4080
‘4095
‘4115
‘4125
‘4145
‘4165
‘4180
‘4200
‘4220
‘4240
‘4250
‘4265
‘4290
‘4300
‘4350
‘4360
‘4395
‘4400
±78
±88
±102
±122
±132
±151
±171
±186
±207
±227
±247
±257
±272
±298
±308
±359
±370
±405
±410
V
I(BO) Breakover current dv/dt = ±250 V/ms, RSOUR CE =300 Ω±0.15 ±0.6 A
A
VTOn-state voltage IT=±5 A, tW=100 μs±3 V
IHHolding current I T=±5A, di/dt = +/-30mA/ms ±0.15 ±0.35 A
dv/dt Critical rate of rise of
off-state voltage Linear voltage ramp, Maximum ramp value < 0.85V DRM ±5kV/μs
IDOff-state current VD=±50V TA = 85 °C±10 μ
Electrical Characteristics, TA = 25 °C (Unless Otherwise Noted)
NOVEMBER 1997 – REVISED JULY 2019
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.
BOURNS Parameter 1251 Commons Mm Typ Max unn f 1 MHz, v :1v rms,v n 4070 Ihru '4115 53 100 Parameter Test Commons Mm Typ Max umt EIA/JESDSHA PCE‘ \T:| , TA 265 mm x 210 mm papu‘ated hne card,
TISP4xxxM3BJ Overvoltage Protector Series
Coff Off-state capacitance
f=1MHz ,V
d=1V rms, VD=0
,
f=1MHz ,V
d=1V rms, VD=-1V
f=1MHz ,V
d=1V rms, VD=-2V
f=1MHz ,V
d=1V rms, VD=-50V
f=1MHz ,V
d=1V rms,VD=-100 V
(see Note 6)
4070 thru 4115
4125 thru 4220
4240 thru 4400
4070 thru 4115
4125 thru 4220
4240 thru 4400
4070 thru 4115
4125 thru 4220
4240 thru 4400
4070 thru 4115
4125 thru 4220
4240 thru 4400
4125 thru 4220
4240 thru 4400
83
62
50
78
56
45
72
52
42
36
26
19
21
15
100
74
60
94
67
54
87
62
50
44
31
22
25
18
pF
NOTE 6: To avoid possible voltage clipping, the 4125 is tested with VD=-98V.
Parameter Test Conditions Min Typ MaxUnit
Parameter Test Conditions Min Typ Max Unit
RθJA Junction to free air thermal resistance
EIA/JESD51-3 PCB, IT = ITSM(1000),
TA = 25 °C, (see Note 7) 115
°C/W
265 mm x 210 mm populated line card,
4-layer PCB, IT = ITSM(1000), TA = 25 °C 52
NOTE 7: EIA/JESD51-2 environment and PCB has standard footprint dimensions connected with 5 A rated printed wiring track widths.
Electrical Characteristics, TA = 25 °C (Unless Otherwise Noted)
Thermal Characteristics
NOVEMBER 1997 – REVISED JULY 2019
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.
BOURNS "
TISP4xxxM3BJ Overvoltage Protector Series
Figure 1. Voltage-Current Characteristic for T and R Terminals
All Measurements are Referenced to the R Terminal
-v VDRM
IDRM
VD
IH
IT
VT
ITSM
ITSP
V(BO)
I(BO)
ID
Quadrant I
I
Switching
Characteristic
+v
+i
V(BO)
I(BO)
VD
ID
IH
IT
VT
ITSM
ITSP
-i
Quadrant III
Switching
Characteristic PMXXAAB
VDRM
IDRM
Parameter Measurement Information
NOVEMBER 1997 – REVISED JULY 2019
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.
NORMALIZED BREAKOVER VOLTAGE OFF-STATE CURRENT $5; Lgfimflm 35.5:an < .="" e250="" 35min="" .="" \="" 2250="" see:="" ufifieez=""><. e250="" wfi—méo="" .="" _="" figure="" 4.="">
TISP4xxxM3BJ Overvoltage Protector Series
Figure 2.
OFF-STATE CURRENT
vs
JUNCTION TEMPERATURE
T
J - Junction Temperature - °C
-25 025 50 75 100 125 150
|I
D
| - Off -State Current - A
0·001
0·01
0·1
1
10
100 TCMAG
VD = ±50 V
Figure 3.
NORMALIZED BREAKOVER VOLTAGE
vs
JUNCTION TEMPERATURE
TJ - Junction Te m perature - °C
-25 025 50 75 100125150
Normalized Breakover Voltage
0.95
1.00
1.05
1.10TC4MAF
Figure 4.
ON-STATE CURRENT
vs
ON-STATE VOLTA GE
VT- On-State Voltage - V
0.7 1.5 2 3 4 5 71110
I
T
- On-StateCurrent- A
1.5
2
3
4
5
7
15
20
30
40
50
70
1
10
100
TA= 25 °C
tW= 100 µs
TC4MACA
'4240
THRU
'4400
'4125
THRU
'4200
'4070
THRU
'4115
Figure 5.
NORMALIZED HOLDING CURRENT
vs
JUNCTION TEMPERATURE
T
J - Junction Tem perature - °C
-25 025 50 75 100 125 150
Normalized Holding Current
0.4
0.5
0.6
0.7
0.8
0.9
1.5
2.0
1.0
TC4MAD
Typical Characteristics
NOVEMBER 1997 – REVISED JULY 2019
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.
=0 Capacitance Normalzed to vD TYPICAL CAPACITANCE ASVMMETRY Figure 8. Figure 7.
TISP4xxxM3BJ Overvoltage Protector Series
Figure 6.
NORMALIZED CAPACITANCE
vs
OFF-STATE VOLTAGE
VD - Off-state Voltage - V
0.5 1235 10 20 30 50 100 150
Capacitance Normalized to V
D
= 0
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
TJ =
Vd = 1 Vrms
TC4MABB
'4240 THRU '4400
'4125 THRU '4220
'4070 THRU '4115
25 °C
Figure 7.
DIFFERENTIAL OFF-STATE CAPACITANCE
vs
R
ATED REPETITIVE PEAK OFF-STATE VOLTAGE
VDRM - Repetitive Peak Off-State Voltage - V
50 60 70 80 90 150 200 250 300
350
100
ΔC - Differential Off-State Capacitance - pF
20
25
30
35
40
ΔC = Coff(-2 V) - Coff (-50 V)
TCMAEB
Figure 8.
TYPICAL CAPACITANCE ASYMMETRY
vs
OFF-STATE VOLTAGE
VDOff-State Voltage V
0.5 0.7 2345 720304050
11
0
|Coff(+VD) - Coff(-VD)| Capaci tance Asymmetry pF
0
1
2
3
Vd = 1 V r ms, 1 MHz
Vd = 10 mV r ms, 1 MHz
TC4XBB
Typical Characteristics
NOVEMBER 1997 – REVISED JULY 2019
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.
BOURNS 36 . 3.5.3:: .252... Eufific. . < .eflsu="" $3.5="" fiat="" agzfinmmgz="" .="" n=""><. 2250="" 3.35.="" bee="" 3:28="" figure="" 12.="">
TISP4xxxM3BJ Overvoltage Protector Series
Figure 10.
THERMAL IMPEDANCE
vs
POWER DURATION
t - Power Duration - s
0·1 110 100 100
0
Z
θA(t)
- Transie nt Thermal Impedance -
°
C/W
4
5
6
7
8
9
15
20
30
40
50
60
70
80
90
150
10
100
TI4MAE
ITSM(t) APPLIED FOR TIME t
EIA/JESD51-2 ENVIRONMENT
EIA/JESD51-3 PCB
TA = 25 °C
Figure 9.
NON-REPETITIVE PEAK ON-STATE CURRENT
vs
CURRENT DURATION
t - Current Duration - s
0·1 110 100 1000
I
TSM(t)
- Non-Repetitive Peak On-State Current - A
1.5
2
3
4
5
6
7
8
9
15
20
30
10
TI4MAC
VGEN = 600 Vrms, 50/60 Hz
RGEN = 1.4*VGEN /ITSM(t)
EIA/JESD51-2 ENVIRONMENT
EIA/JESD51-3 PCB
TA = 25 °C
Figure 11.
VDRM DERATING FACTOR
vs
MINIMUM AMBIENT TEMPERATURE
T
AMIN - Minimum Ambient Temperature - °C
-35 -25 -15 -5 515 25-40 -30 -20 -10 010 20
Derating Factor
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00 TI4MADA
'4125 THRU '4200
'4240 THRU '4400
'4070 THRU '4115
Figure 12.
IMPULSE RATING
vs
AMBIENT TEMPERATURE
T
A - Ambient Temperature - °C
-40 -30 -20 -10 0 1020304050607080
Impulse Current - A
40
50
60
70
80
90
100
120
150
200
250
300
400
IEC 1.2/50, 8/20
ITU-T 10/700
FCC 10/560
BELLCORE 2/10
BELLCORE 10/1000
FCC 10/160
TC4MAA
Rating and Thermal Information
NOVEMBER 1997 – REVISED JULY 2019
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.
Peak Voltage Voltage Peak Curlenl us
TISP4xxxM3BJ Overvoltage Protector Series
These devices are two terminal overvoltage protectors. They may be used either singly to limit the voltage between two conductors
(Figure 13) or in multiples to limit the voltage at several points in a circuit (Figure 14).
APPLICATIONS INFORMATION
To verify the withstand capability and safety of the equipment, standards require that the equipment is tested with various impulse wave
forms. The table below shows some common values.
Figure 13. Two Point Protection
Th1
In Figure 13, protector Th1 limits the maximum voltage between the two conductors to ±V(BO). This configuration is normally used to protect
circuits without a ground reference, such as modems. In Figure 14, protectors Th2 and Th3 limit the maximum voltage between each
conductor and ground to the ±V(BO) of the individual protector. Protector Th1 limits the maximum voltage between the two conductors to
its ±V(BO) value. If the equipment being protected has all its vulnerable components connected between the conductors and ground, then
protector Th1 is not required.
Standard
Peak Voltage
Setting
V
Voltage
Wave Shape
Peak Current
Value
A
Current
Wave Shape
TISP4XXXM3
25 °C Rating
A
Series
Resistance
GR-1089-CORE2500 2/10 500 2/10 300 11
1000 10/1000 100 10/1000 50
FCC Part 68
(March 1998)
1500 10/160 200 10/160 120 2x5.6
800 10/560 100 10/560 75 3
1500 9/720 37.5 5/320 100 0
1000 9/720 †255/320 100 0
I3124 1500 0.5/700 37.5 0.2/310 100 0
ITU-T K.20/K.21 1500
4000 10/700 37.5
100 5/310 100 0
FCC Part 68 terminology for the waveforms produced by the ITU-T recommendation K.21 10/700 impulse generator
If the impulse generator current exceeds the protector’s current rating, then a series resistance can be used to reduce the current to the
protector’s rated value to prevent possible failure. The required value of series resistance for a given waveform is given by the following
calculations. First, the minimum total circuit impedance is found by dividing the impulse generator’s peak voltage by the protector’s rated
current. The impulse generator’s fictive impedance (generator’s peak voltage divided by peak short circuit current) is then subtracted from the
minimum total circuit impedance to give the required value of series resistance.
For the FCC Part 68 10/560 waveform, the following values result. The minimum total circuit impedance is 800/75 = 10.7 Ω and the
generator’s fictive impedance is 800/100 = 8 Ω. This gives a minimum series resistance value of 10.7 - 8 = 2.7 Ω. After allowing for tolerance,
a 3 Ω ±10% resistor would be suitable. The 10/160 waveform needs a standard resistor value of 5.6 Ω per conductor. These would be R1a
and R1b in Figure 16 and Figure 17. FCC Part 68 allows the equipment to be non-operational after the 10/160 (conductor to ground) and
10/560 (inter-conductor) impulses. The series resistor value may be reduced to zero to pass FCC Part 68 in a non-operational mode, e.g.
Figure 15. For this type of design, the series fuse must open before the TISP4xxxM3 fails. For Figure 15, the maximum fuse i2t is 2.3 A2s.
In some cases, the equipment will require verification over a temperature range. By using the rated waveform values from Figure 12, the
appropriate series resistor value can be calculated for ambient temperatures in the range of -40 °C to 85 °C.
Deployment
Impulse Testing
NOVEMBER 1997 – REVISED JULY 2019
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.
BOURNS “
The protector characteristic off-state capacitance values are given for d.c. bias voltage, VD, values of 0, -1 V, -2 V and -50 V. Where possible
values are also given for -100 V. Values for other voltages may be calculated by multiplying the VD = 0 capacitance value by the factor given
in Figure 6. Up to 10 MHz, the capacitance is essentially independent of frequency. Above 10 MHz, the effective capacitance is strongly
dependent on connection inductance. In many applications, such as Figure 16 and Figure 18, the typical conductor bias voltages will be about
-2 V and -50 V. Figure 7 shows the differential (line unbalance) capacitance caused by biasing one protector at -2 V and the other at -50 V.
Figure 8 shows the typical capacitance asymmetry; the difference between the capacitance measured with a positive value of VD and the
capacitance value when the polarity of VD is reversed. Capacitance asymmetry is an important parameter in ADSL systems where the
protector often has no d.c. bias and the signal level is in the region of ±10 V.
The protector can withstand currents applied for times not exceeding those shown in Figure 9. Currents that exceed these times must be
terminated or reduced to avoid protector failure. Fuses, PTC (Positive Temperature Coefficient) thermistors and fusible resistors are
overcurrent protection devices which can be used to reduce the current flow. Protective fuses may range from a few hundred milliamperes to
one ampere. In some cases, it may be necessary to add some extra series resistance to prevent the fuse opening during impulse testing. The
current versus time characteristic of the overcurrent protector must be below the line shown in Figure 9. In some cases, there may be a further
time limit imposed by the test standard (e.g. UL 1459 wiring simulator failure).
TISP4xxxM3BJ Overvoltage Protector Series
The protector should not clip or limit the voltages that occur in normal system operation. For unusual conditions, such as ringing without the
line connected, some degree of clipping is permissible. Under this condition, about 10 V of clipping is normally possible without activating the
ring trip circuit.
Figure 11 allows the calculation of the protector VDRM value at temperatures below 25 °C. The calculated value should not be less than the
maximum normal system voltages. The TISP4265M3BJ, with a VDRM of 200 V, can be used for the protection of ring generators producing
100 V rms of ring on a battery voltage of -58 V (Th2 and Th3 in Figure 18). The peak ring voltage will be 58 + 1.414*100 = 199.4 V. However,
this is the open circuit voltage and the connection of the line and its equipment will reduce the peak voltage. In the extreme case of an
unconnected line, clipping the peak voltage to 190 V should not activate the ring trip. This level of clipping would occur at the temperature
when the VDRM has reduced to 190/200 = 0.95 of its 25 °C value. Figure 11 shows that this condition will occur at an ambient temperature of
-28 °C. In this example, the TISP4265M3BJ will allow normal equipment operation provided that the minimum expected ambient temperature
does not fall below -28 °C.
To standardize thermal measurements, the EIA (Electronic Industries Alliance) has created the JESD51 standard. Part 2 of the standard
(JESD51-2, 1995) describes the test environment. This is a 0.0283 m3 (1 ft3) cube which contains the test PCB (Printed Circuit Board)
horizontally mounted at the center. Part 3 of the standard (JESD51-3, 1996) defines two test PCBs for surface mount components; one for
packages smaller than 27 mm on a side and the other for packages up to 48 mm. The SMBJ measurements used the smaller 76.2 mm x
114.3 mm (3.0 “ x 4.5 “) PCB. The JESD51-3 PCBs are designed to have low effective thermal conductivity (high thermal resistance) and
represent a worst case condition. The PCBs used in the majority of applications will achieve lower values of thermal resistance, and can
dissipate higher power levels than indicated by the JESD51 values.
AC Power Testing
Capacitance
Normal System Voltage Levels
JESD51 Thermal Measurement Method
NOVEMBER 1997 – REVISED JULY 2019
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.
E RING DETECTOR ZZ HOOK swncn D.C. SINK TISF4350 SIGNAL > AIEXBMA Figure 15. Modern lmer—Wine Protection
TISP4xxxM3BJ Overvoltage Protector Series
Figure 15. Modem Inter-Wire Protection
FUSE
TISP4350
AI6XBMA
RING DETECTOR
HOOK SWITCH
D.C. SINK
SIGNAL
MODEM
RING
TIP
Figure 16. PROTECTION MODULE
R1a
R1b
RING
WIRE
TIP
WIRE
Th3
Th2
Th1
PROTECTED
EQUIPMENT
E.G. LINE CARD
AI6XBK
Figure 17. ISDN Protection
R1a
R1b
Th3
Th2
Th1
AI6XBL
SIGNAL
D.C.
Figure 18. Line Card Ring/Test Protection
TEST
RELAY
RING
RELAY
SLIC
RELAY
TEST
EQUIP-
MENT RING
GENERATOR
S1a
S1b
R1a
R1b
RING
WIRE
TIP
WIRE
Th3
Th2
Th1
Th4
Th5
SLIC
SLIC
PROTECTION
RING/TEST
PROTECTION
OVER-
CURRENT
PROTECTION
S2a
S2b
S3a
S3b
V
BAT
C1
220 nF
AI6XBJ
TISP6xxxx,
TISPPBLx,
TISP6NTP2
Typical Circuits
NOVEMBER 1997 – REVISED JULY 2019
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.
BOURNS Symbolizalim Code T‘SP4D7UMSBJ 4D7UM3 T‘SPIJDEOMSBJ 4DEUM3 T‘SPIJDSSMSBJ 4095M3 T‘SP4115MSBJ 4115M3 T‘SP4125MSBJ 4125M3 T‘SP4145MSBJ 4145M3 T‘SPMESMSBJ 4165M3 T‘SPMEOMSBJ “ROMS T‘SPIJZUOMSBJ 4200M3 T‘SP4220MSBJ 4220M3 T‘SP424OMSBJ 424OM3 T‘SP4250MSBJ 4250M3 T‘SP4265MSBJ 4265M3 T‘SP4290MSBJ 4290M3 T‘SP4300MSBJ 4300M3 T‘SP4350MSBJ 4350M3 T‘SP4360MSBJ 4360M3 T‘SP4395MSBJ 4395M3 T‘SP44OOMSBJ 44OOM3 BOURNS'
TISP4xxxM3BJ Overvoltage Protector Series
Devices will be coded as below. As the device parameters are symmetrical, terminal 1 is not identified.
Device Symbolization
Code
TISP4070M3BJ4070M3
TISP4080M3BJ4080M3
TISP4095M3BJ4095M3
TISP4115M3BJ4115M3
TISP4125M3BJ4125M3
TISP4145M3BJ4145M3
TISP4165M3BJ4165M3
TISP4180M3BJ4180M3
TISP4200M3BJ4200M3
TISP4220M3BJ4220M3
TISP4240M3BJ4240M3
TISP4250M3BJ4250M3
TISP4265M3BJ4265M3
TISP4290M3BJ4290M3
TISP4300M3BJ4300M3
TISP4350M3BJ4350M3
TISP4360M3BJ4360M3
TISP4395M3BJ4395M3
TISP4400M3BJ4400M3
Device Symbolization Code
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.
“TISP” is a trademark of Bourns, Ltd., a Bourns Company, and is registered in the U.S. Patent and Trademark Office.
“Bourns” is a registered trademark of Bourns, Inc. in the U.S. and other countries.
NOVEMBER 1997 – REVISED JULY 2019
Asia-Pacific: Tel: +886-2 2562-4117 • Email: asiacus@bourns.com
Europe: Tel: +36 88 885 877 • Email: eurocus@bourns.com
The Americas: Tel: +1-951 781-5500 • Email: americus@bourns.com
www.bourns.com
BOURNS'
Legal Disclaimer Notice
This legal disclaimer applies to purchasers and users of Bourns® products manufactured by or on behalf of Bourns, Inc. and
P[ZHɉSPH[LZJVSSLJ[P]LS`¸)V\YUZ¹
Unless otherwise expressly indicated in writing, Bourns® products and data sheets relating thereto are subject to change
^P[OV\[UV[PJL<ZLYZZOV\SKJOLJRMVYHUKVI[HPU[OLSH[LZ[YLSL]HU[PUMVYTH[PVUHUK]LYPM`[OH[Z\JOPUMVYTH[PVUPZJ\YYLU[
and complete before placing orders for Bourns® products.
The characteristics and parameters of a Bourns® product set forth in its data sheet are based on laboratory conditions, and
statements regarding the suitability of products for certain types of applications are based on Bourns’ knowledge of typical
requirements in generic applications. The characteristics and parameters of a Bourns®WYVK\J[PUH\ZLYHWWSPJH[PVUTH`]HY`
MYVT[OLKH[HZOLL[JOHYHJ[LYPZ[PJZHUKWHYHTL[LYZK\L[VP[OLJVTIPUH[PVUVM[OL)V\YUZ® product with other components
PU[OL\ZLY»ZHWWSPJH[PVUVYPP[OLLU]PYVUTLU[VM[OL\ZLYHWWSPJH[PVUP[ZLSM;OLJOHYHJ[LYPZ[PJZHUKWHYHTL[LYZVMH)V\YUZ®
WYVK\J[HSZVJHUHUKKV]HY`PUKPɈLYLU[HWWSPJH[PVUZHUKHJ[\HSWLYMVYTHUJLTH`]HY`V]LY[PTL<ZLYZZOV\SKHS^H`Z]LYPM`
the actual performance of the Bourns®WYVK\J[PU[OLPYZWLJPÄJKL]PJLZHUKHWWSPJH[PVUZHUKTHRL[OLPYV^UPUKLWLUKLU[
Q\KNTLU[ZYLNHYKPUN[OLHTV\U[VMHKKP[PVUHS[LZ[THYNPU[VKLZPNUPU[V[OLPYKL]PJLVYHWWSPJH[PVU[VJVTWLUZH[LMVY
KPɈLYLUJLZIL[^LLUSHIVYH[VY`HUKYLHS^VYSKJVUKP[PVUZ
<USLZZ)V\YUZOHZL_WSPJP[S`KLZPNUH[LKHUPUKP]PK\HS)V\YUZ® product as meeting the requirements of a particular industry
Z[HUKHYKLN0:6;:  VYHWHY[PJ\SHYX\HSPÄJH[PVULN<3SPZ[LKVYYLJVNUPaLK)V\YUZPZUV[YLZWVUZPISLMVYHU`
MHPS\YLVMHUPUKP]PK\HS)V\YUZ®WYVK\J[[VTLL[[OLYLX\PYLTLU[ZVMZ\JOPUK\Z[Y`Z[HUKHYKVYWHY[PJ\SHYX\HSPÄJH[PVU<ZLYZ
of Bourns® products are responsible for ensuring compliance with safety-related requirements and standards applicable to
[OLPYKL]PJLZVYHWWSPJH[PVUZ
Bourns®WYVK\J[ZHYLUV[YLJVTTLUKLKH\[OVYPaLKVYPU[LUKLKMVY\ZLPUU\JSLHYSPMLZH]PUNSPMLJYP[PJHSVYSPMLZ\Z[HPUPUN
HWWSPJH[PVUZUVYPUHU`V[OLYHWWSPJH[PVUZ^OLYLMHPS\YLVYTHSM\UJ[PVUTH`YLZ\S[PUWLYZVUHSPUQ\Y`KLH[OVYZL]LYLWYVWLY[`
VYLU]PYVUTLU[HSKHTHNL<USLZZL_WYLZZS`HUKZWLJPÄJHSS`HWWYV]LKPU^YP[PUNI`[^VH\[OVYPaLK)V\YUZYLWYLZLU[H[P]LZ
on a case-by-case basis, use of any Bourns®WYVK\J[ZPUZ\JO\UH\[OVYPaLKHWWSPJH[PVUZTPNO[UV[ILZHMLHUK[O\ZPZH[
[OL\ZLY»ZZVSLYPZR3PMLJYP[PJHSHWWSPJH[PVUZPUJS\KLKL]PJLZPKLU[PÄLKI`[OL<:-VVKHUK+Y\N(KTPUPZ[YH[PVUHZ*SHZZ000
KL]PJLZHUKNLULYHSS`LX\P]HSLU[JSHZZPÄJH[PVUZV\[ZPKLVM[OL<UP[LK:[H[LZ
)V\YUZL_WYLZZS`PKLU[PÄLZ[OVZL)V\YUZ®Z[HUKHYKWYVK\J[Z[OH[HYLZ\P[HISLMVY\ZLPUH\[VTV[P]LHWWSPJH[PVUZVUZ\JO
WYVK\J[Z»KH[HZOLL[ZPU[OLZLJ[PVULU[P[SLK¸(WWSPJH[PVUZ¹<USLZZL_WYLZZS`HUKZWLJPÄJHSS`HWWYV]LKPU^YP[PUNI`[^V
H\[OVYPaLK)V\YUZYLWYLZLU[H[P]LZVUHJHZLI`JHZLIHZPZ\ZLVMHU`V[OLY)V\YUZ®Z[HUKHYKWYVK\J[ZPUHUH\[VTV[P]L
HWWSPJH[PVUTPNO[UV[ILZHMLHUK[O\ZPZUV[YLJVTTLUKLKH\[OVYPaLKVYPU[LUKLKHUKPZH[[OL\ZLY»ZZVSLYPZR0M)V\YUZ
L_WYLZZS`PKLU[PÄLZHZ\IJH[LNVY`VMH\[VTV[P]LHWWSPJH[PVUPU[OLKH[HZOLL[MVYP[ZZ[HUKHYKWYVK\J[ZZ\JOHZPUMV[HPUTLU[
VYSPNO[PUNZ\JOPKLU[PÄJH[PVUTLHUZ[OH[)V\YUZOHZYL]PL^LKP[ZZ[HUKHYKWYVK\J[HUKOHZKL[LYTPULK[OH[PMZ\JO)V\YUZ®
Z[HUKHYKWYVK\J[PZJVUZPKLYLKMVYWV[LU[PHS\ZLPUH\[VTV[P]LHWWSPJH[PVUZP[ZOV\SKVUS`IL\ZLKPUZ\JOZ\IJH[LNVY`VM
H\[VTV[P]LHWWSPJH[PVUZ(U`YLMLYLUJL[V)V\YUZ®Z[HUKHYKWYVK\J[PU[OLKH[HZOLL[HZJVTWSPHU[^P[O[OL(,*8Z[HUKHYK
VY¸H\[VTV[P]LNYHKL¹KVLZUV[I`P[ZLSMTLHU[OH[)V\YUZOHZHWWYV]LKZ\JOWYVK\J[MVY\ZLPUHUH\[VTV[P]LHWWSPJH[PVU
Bourns®Z[HUKHYKWYVK\J[ZHYLUV[[LZ[LK[VJVTWS`^P[O<UP[LK:[H[LZ-LKLYHS(]PH[PVU(KTPUPZ[YH[PVUZ[HUKHYKZNLULYHSS`
VYHU`V[OLYNLULYHSS`LX\P]HSLU[NV]LYUTLU[HSVYNHUPaH[PVUZ[HUKHYKHWWSPJHISL[VWYVK\J[ZKLZPNULKVYTHU\MHJ[\YLKMVY
\ZLPUHPYJYHM[VYZWHJLHWWSPJH[PVUZ)V\YUZL_WYLZZS`PKLU[PÄLZ)V\YUZ® standard products that are suitable for use in aircraft
VYZWHJLHWWSPJH[PVUZVUZ\JOWYVK\J[Z»KH[HZOLL[ZPU[OLZLJ[PVULU[P[SLK¸(WWSPJH[PVUZ¹<USLZZL_WYLZZS`HUKZWLJPÄJHSS`
HWWYV]LKPU^YP[PUNI`[^VH\[OVYPaLK)V\YUZYLWYLZLU[H[P]LZVUHJHZLI`JHZLIHZPZ\ZLVMHU`V[OLY)V\YUZ® standard
WYVK\J[PUHUHPYJYHM[VYZWHJLHWWSPJH[PVUTPNO[UV[ILZHMLHUK[O\ZPZUV[YLJVTTLUKLKH\[OVYPaLKVYPU[LUKLKHUKPZH[
the user’s sole risk.
;OL\ZLHUKSL]LSVM[LZ[PUNHWWSPJHISL[V)V\YUZ® custom products shall be negotiated on a case-by-case basis by Bourns
and the user for which such Bourns®J\Z[VTWYVK\J[ZHYLZWLJPHSS`KLZPNULK(IZLU[H^YP[[LUHNYLLTLU[IL[^LLU)V\YUZ
HUK[OL\ZLYYLNHYKPUN[OL\ZLHUKSL]LSVMZ\JO[LZ[PUN[OLHIV]LWYV]PZPVUZHWWSPJHISL[V)V\YUZ® standard products shall
also apply to such Bourns® custom products.
Users shall not sell, transfer, export or re-export any Bourns®WYVK\J[ZVY[LJOUVSVN`MVY\ZLPUHJ[P]P[PLZ^OPJOPU]VS]L[OL
KLZPNUKL]LSVWTLU[WYVK\J[PVU\ZLVYZ[VJRWPSPUNVMU\JSLHYJOLTPJHSVYIPVSVNPJHS^LHWVUZVYTPZZPSLZUVYZOHSS[OL`\ZL
Bourns®WYVK\J[ZVY[LJOUVSVN`PUHU`MHJPSP[`^OPJOLUNHNLZPUHJ[P]P[PLZYLSH[PUN[VZ\JOKL]PJLZ;OLMVYLNVPUNYLZ[YPJ[PVUZ
HWWS`[VHSS\ZLZHUKHWWSPJH[PVUZ[OH[]PVSH[LUH[PVUHSVYPU[LYUH[PVUHSWYVOPIP[PVUZPUJS\KPUNLTIHYNVZVYPU[LYUH[PVUHS
YLN\SH[PVUZ-\Y[OLY)V\YUZ® products and Bourns technology and technical data may not under any circumstance be
exported or re-exported to countries subject to international sanctions or embargoes. Bourns® products may not, without
WYPVYH\[OVYPaH[PVUMYVT)V\YUZHUKVY[OL<:.V]LYUTLU[ILYLZVSK[YHUZMLYYLKVYYLL_WVY[LK[VHU`WHY[`UV[LSPNPISL
[VYLJLP]L<:JVTTVKP[PLZZVM[^HYLHUK[LJOUPJHSKH[H
;V[OLTH_PT\TL_[LU[WLYTP[[LKI`HWWSPJHISLSH^)V\YUZKPZJSHPTZPHU`HUKHSSSPHIPSP[`MVYZWLJPHSW\UP[P]LJVUZLX\LU[PHS
PUJPKLU[HSVYPUKPYLJ[KHTHNLZVYSVZ[YL]LU\LZVYSVZ[WYVÄ[ZHUKPPHU`HUKHSSPTWSPLK^HYYHU[PLZPUJS\KPUNPTWSPLK^HYYHU[PLZ
VMÄ[ULZZMVYWHY[PJ\SHYW\YWVZLUVUPUMYPUNLTLU[HUKTLYJOHU[HIPSP[`
)RU\RXUFRQYHQLHQFHFRSLHVRIWKLV/HJDO'LVFODLPHU1RWLFHZLWK*HUPDQ6SDQLVK-DSDQHVH7UDGLWLRQDO&KLQHVHDQG6LPSOLÀHG&KLQHVH
bilingual versions are available at:
Web Page:
http://www.bourns.com/legal/disclaimers-terms-and-policies
PDF: http://www.bourns.com/docs/Legal/disclaimer.pdf
*9

Products related to this Datasheet

THYRISTOR 200V 220A DO214AA
Available Quantity: 15,868
Unit Price: 1.12
THYRISTOR 300V 220A DO214AA
Available Quantity: 14,703
Unit Price: 1.13
THYRISTOR 275V 220A DO214AA
Available Quantity: 5,574
Unit Price: 1.2
THYRISTOR 65V 220A DO214AA
Available Quantity: 23,490
Unit Price: 1.11
THYRISTOR 180V 220A DO214AA
Available Quantity: 15,888
Unit Price: 1.11
THYRISTOR 58V 220A DO214AA
Available Quantity: 15,119
Unit Price: 1.11
THYRISTOR 230V 220A DO214AA
Available Quantity: 33
Unit Price: 1.2
THYRISTOR 58V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 65V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 90V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 100V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 120V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 135V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 145V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 155V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 160V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 180V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 190V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 200V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 220V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 230V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 275V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 320V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 300V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 120V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 220V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 320V 220A DO214AA
Available Quantity: 0
Unit Price: 0
THYRISTOR 90V 220A DO214AA
Available Quantity: 0
Unit Price: 0.41485
THYRISTOR 100V 220A DO214AA
Available Quantity: 0
Unit Price: 0.41485
THYRISTOR 135V 220A DO214AA
Available Quantity: 0
Unit Price: 0.41485
THYRISTOR 160V 220A DO214AA
Available Quantity: 0
Unit Price: 0.41485
THYRISTOR 145V 220A DO214AA
Available Quantity: 0
Unit Price: 0.41485
THYRISTOR 190V 220A DO214AA
Available Quantity: 0
Unit Price: 0.41485
THYRISTOR 290V 220A DO214AA
Available Quantity: 0
Unit Price: 0.41485
THYRISTOR 155V 220A DO214AA
Available Quantity: 0
Unit Price: 0.41485