MAX2067 Datasheet by Analog Devices Inc./Maxim Integrated

View All Related Products | Download PDF Datasheet
lVI/JXI/VI [MAXI/VI
General Description
The MAX2067 high-linearity analog variable-gain ampli-
fier (VGA) is a monolithic SiGe BiCMOS attenuator and
amplifier designed to interface with 50systems oper-
ating in the 50MHz to 1000MHz frequency range (see
the
Typical Application Circuit
). The analog attenuator
is controlled using an external voltage or through the
SPI™-compatible interface using an on-chip 8-bit DAC.
Because each stage has its own RF input and RF out-
put, this component can be configured to either opti-
mize NF (amplifier configured first), or OIP3 (amplifier
last). The device’s performance features include 22dB
amplifier gain (amplifier only), 4dB NF at maximum gain
(includes attenuator insertion loss), and a high OIP3
level of +43dBm. Each of these features makes the
MAX2067 an ideal VGA for numerous receiver and
transmitter applications.
In addition, the MAX2067 operates from a single +5V
supply with full performance, or a single +3.3V supply
with slightly reduced performance, and has an
adjustable bias to trade current consumption for linearity
performance. This device is available in a compact 40-
pin thin QFN package (6mm x 6mm) with an exposed
pad. Electrical performance is guaranteed over the
extended temperature range (TC= -40°C to +85°C).
Applications
IF and RF Gain Stages
Temperature Compensation Circuits
Cellular Band WCDMA and cdma2000® Base
Stations
GSM 850/GSM 900 EDGE Base Stations
WiMAX and LTE Base Stations and Customer
Premise Equipment
Fixed Broadband Wireless Access
Wireless Local Loop
Military Systems
Video-on-Demand (VOD) and DOCSIS®-
Compliant EDGE QAM Modulation
Cable Modem Termination Systems (CMTS)
RFID Handheld and Portal Readers
Features
50MHz to 1000MHz RF Frequency Range
Pin-Compatible Family Includes
MAX2065 (Analog/Digital VGA)
MAX2066 (Digital VGA)
+21.9dB (typ) Maximum Gain
0.5dB Gain Flatness Over 100MHz Bandwidth
31dB Gain Range
Built-In DAC for Analog Attenuation Control
Excellent Linearity (Configured with Amplifier
Last)
+43dBm OIP3
+66dBm OIP2
+19dBm Output 1dB Compression Point
-70dBc HD2
-87dBc HD3
4dB Typical Noise Figure (NF)
Single +5V Supply (Optional +3.3V Operation)
External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/
Reduced-Performance Mode
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
________________________________________________________________
Maxim Integrated Products
1
Ordering Information
19-4080; Rev 0; 4/08
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
+
Denotes a lead-free package.
*
EP = Exposed pad.
T = Tape and reel.
Pin Configuration appears at end of data sheet.
SPI is a trademark of Motorola, Inc.
cdma2000 is a registered trademark of Telecommunications
Industry Association.
DOCSIS and CableLabs are registered trademarks of Cable
Television Laboratories, Inc. (CableLabs®).
PART TEMP RANGE PIN-PACKAGE
MAX2067ETL+ -40°C to +85°C 40 Thin QFN-EP*
MAX2067ETL+T -40°C to +85°C 40 Thin QFN-EP*
board For detafled mmrmahon 0n package therma‘ conswderauons referto www.ma [VI/J XIIVI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, high-current (HC) mode, VCC = VDD = +3.0V to +3.6V, TC= -40°C to +85°C. Typical values are at VCC =
VDD = +3.3V and TC= +25°C, unless otherwise noted.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: Based on junction temperature TJ= TC+ (θJC x VCC x ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a printed-circuit board (PCB). See the
Applications Information
section
for details. The junction temperature must not exceed +150°C.
Note 2: Junction temperature TJ= TA+ (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer
board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TCis the temperature on the exposed pad of the package. TAis the ambient temperature of the device and PCB.
VCC_ to GND ........................................................-0.3V to +5.5V
VDD_LOGIC, DATA, CS, CLK, VDAC_EN,
VREF_SELECT.....................................-0.3V to (VCC_ + 0.3V)
AMP_IN, AMP_OUT, VREF_IN,
ANALOG_VCTRL ................................-0.3V to (VCC_ + 0.3V)
ATTEN_IN, ATTEN_OUT........................................-1.2V to +1.2V
RSET to GND.........................................................-0.3V to +1.2V
RF Input Power (ATTEN_IN, ATTEN_OUT).....................+20dBm
RF Input Power (AMP_IN)...............................................+18dBm
Continuous Power Dissipation (Note 1) ...............................6.5W
θJA (Notes 2, 3)..............................................................+38°C/W
θJC (Note 3) ...................................................................+10°C/W
Operating Temperature Range (Note 4).....TC= -40°C to +85°C
Maximum Junction Temperature .....................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage VCC Note 5 3.0 3.3 3.6 V
Supply Current ICC 60 82 mA
LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT)
Input High Voltage VIH 2V
Input Low Voltage VIL 0.8 V
+5V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC = VDD = +4.75V to +5.25V, TC= -40°C to +85°C. Typical values are at VCC = VDD = +5V and
TC= +25°C, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage VCC 4.75 5 5.25 V
Low-current (LC) mode 72 92
Supply Current ICC High-current (HC) mode 123 146 mA
LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT)
Input High Voltage VIH 3V
Input Low Voltage VIL 0.8 V
Input Current Logic-High IIH -1 +1 µA
Input Current Logic-Low IIL -1 +1 µA
[VI/JXI [VI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
_______________________________________________________________________________________ 3
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC = VDD = +4.75 to +5.25V, HC mode with attenuator set for maximum gain, 50MHz fRF 1000MHz,
TC= -40°C to +85°C. Typical values are at VCC = VDD = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, unless
otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Range fRF (Notes 5, 7) 50 1000 MHz
200MHz 21.9
350MHz, TC = +25°C (Note 5) 20.3 21.3 22.3
450MHz 20.9
750MHz 19.4
Small-Signal Gain G
900MHz 18.7
dB
Gain Variation vs. Temperature -0.006 dB/°C
Gain Flatness vs. Frequency Any 100MHz frequency band from 50MHz
to 500MHz 0.5 dB
200MHz 4
350MHz, TC = +25°C (Note 5) 4.2 5.2
450MHz 4.3
750MHz 4.8
Noise Figure NF
900MHz 5
dB
Total Attenuation Range 31 dB
Output Second-Order Intercept
Point OIP2 POUT = 0dBm/tone, f = 1MHz, f1 + f266 dBm
200MHz 43
350MHz 40.8
450MHz 39.8
750MHz 37.3
POUT = 0dBm/tone,
H C m od e, f = 1M H z
900MHz 36.2
200MHz 40
350MHz 38.2
450MHz 37.4
750MHz 35.5
Output Third-Order Intercept
Point OIP3
POUT = 0dBm/tone,
LC mode, f = 1MHz
900MHz 34.3
dBm
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC = VDD = +3.0V to +3.6V, TC= -40°C to +85°C. Typical values are at VCC = VDD = +3.3V, HC mode
with attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Range fRF (Notes 5, 7) 50 1000 MHz
Small-Signal Gain G 21.3 dB
Output Third-Order Intercept
Point OIP3 POUT = 0dBm/tone, maximum gain setting 38 dBm
Noise Figure NF Maximum gain setting 4.3 dB
Total Attenuation Range 31 dB
[VIIJXIIM
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
4 _______________________________________________________________________________________
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
, VCC = VDD = +4.75 to +5.25V, HC mode with attenuator set for maximum gain, 50MHz fRF 1000MHz,
TC= -40°C to +85°C. Typical values are at VCC = VDD = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, unless
otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Output -1dB Compression Point P1dB 350MHz, TC = +25°C (Notes 5, 8) 17 18.7 dBm
Second Harmonic POUT = +3dBm, fRF = 200MHz, TC = +25°C
(Note 5) -61 -70 dBc
Third Harmonic POUT = +3dBm, fRF = 200MHz, TC = +25°C
(Note 5) -74 -87 dBc
Input from ANALOG_VCTRL 1
Attenuator Response Time
(Note 9) Input from CS rising edge 3.2 µs
Group Delay Maximum gain setting, includes EV kit PCB
delays 0.8 ns
Input Return Loss 50 source, maximum gain setting 30 dB
Output Return Loss 50 load, maximum gain setting 16 dB
ANALOG ATTENUATOR
Insertion Loss 1.2 dB
Input Second-Order Intercept
Point IIP2 PRF1 = 0dBm, PRF2 = 0dBm, maximum gain
setting, f = 1MHz, f1 + f270 dBm
Input Third-Order Intercept Point IIP3 PRF1 = 0dBm, PRF2 = 0dBm, maximum gain
setting, f = 1MHz 36 dBm
Attenuation Range Analog control input 31 dB
Gain-Control Slope Analog control input -12.5 dB/V
Maximum Gain-Control Slope Over analog control input range -35 dB/V
Insertion Phase Change Over analog control input range 18 D eg r ees
Group Delay vs. Control Voltage Over analog control input range -0.25 ns
Analog Control Input Range 0.25 2.75 V
Analog Control Input Impedance 80 k
Input Return Loss 50 source, maximum gain setting 22 dB
Output Return Loss 50 load, maximum gain setting 22 dB
DAC
Number of Bits 8 Bits
DAC code = 00000000 0.25
Output Voltage DAC code = 11111111 2.75 V
[VI/JXI [VI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
_______________________________________________________________________________________ 5
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
, VCC = VDD = +4.75 to +5.25V, HC mode with attenuator set for maximum gain, 50MHz fRF 1000MHz,
TC= -40°C to +85°C. Typical values are at VCC = VDD = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC= +25oC, unless
otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
SERIAL PERIPHERAL INTERFACE (SPI)
Maximum Clock Speed fCLK 20 MHz
Data-to-Clock Setup Time tCS 2ns
Data-to-Clock Hold Time tCH 2.5 ns
Clock-to-CS Setup Time tES 3ns
CS Positive Pulse Width tEW 7ns
CS Setup Time tEWS 3.5 ns
Clock Pulse Width tCW 5ns
Note 5: Guaranteed by design and characterization.
Note 6: All limits include external component losses. Output measurements are performed at RF output port of the
Typical
Application Circuit
Note 7: Operating outside this range is possible, but with degraded performance of some parameters.
Note 8: It is advisable not to continuously operate the VGA RF input above +15dBm.
Note 9: Response time includes full attenuation range change with output setting to within ±0.1dB.
[MAXI/VI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
6 _______________________________________________________________________________________
GAIN OVER ATTENENUATOR
SETTING vs. RF FREQUENCY
MAX2067 toc04
RF FREQUENCY (MHz)
GAIN (dB)
850450 650250
-6
4
14
24
-16
-1
9
19
-11
50 1050
DAC CODE 256
DAC CODE 64
DAC CODE 0
DAC CODE 128
DAC CODE 32
GAIN vs. ATTENUATOR SETTING
MAX2067 toc05
DAC CODE
GAIN (dB)
32 9664 160 224192128
-6
4
14
24
-11
-1
9
19
-16
0 256
1000MHz
450MHz
200MHz
50MHz
GAIN vs. ATTENUATOR SETTING
MAX2067 toc06
DAC CODE
GAIN (dB)
96 22416012832 64 192
4
19
24
14
9
-16
-6
-11
-1
0256
TC = -40°C, +25°C, +85°C
fRF = 200MHz
GAIN vs. ATTENUATOR SETTING
MAX2067 toc07
DAC CODE
GAIN (dB)
96 22416012832 64 192
4
19
24
14
9
-16
-6
-11
-1
0256
VCC = 4.75V, 5.00V, 5.25V
fRF = 200MHz
INPUT MATCH vs.
ATTENUATOR SETTING
MAX2067 toc08
DAC CODE
INPUT MATCH (dB)
128 19216032 9664 224
-25
-20
-15
-10
-40
-35
-30
0 256
450MHz
50MHz
1000MHz
200MHz
OUTPUT MATCH vs.
ATTENUATOR SETTING
MAX2067 toc09
DAC CODE
OUTPUT MATCH (dB)
128 19216032 9664 224
-15
-10
-5
0
-30
-25
-20
0256
450MHz
50MHz
1000MHz
200MHz
SUPPLY CURRENT vs. SUPPLY VOLTAGE
MAX2067 toc01
VCC (V)
SUPPLY CURRENT (mA)
5.1255.0004.875
110
120
130
140
150
100
4.750 5.250
TC = +85°C
TC = +25°C
TC = -40°C
GAIN vs. RF FREQUENCY
MAX2067 toc02
RF FREQUENCY (MHz)
GAIN (dB)
850450 650250
17
18
19
21
20
22
23
24
16
50 1050
TC = +25°C
TC = -40°C
TC = +85°C
GAIN vs. RF FREQUENCY
MAX2067 toc03
RF FREQUENCY (MHz)
GAIN (dB)
850450 650250
17
18
19
21
20
22
23
24
16
50 1050
VCC = 4,75V, 5.00V, 5.25V
Typical Operating Characteristics
(VCC = VDD = +5.0V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
W \ [VI/IX I [VI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
_______________________________________________________________________________________ 7
NOISE FIGURE vs. RF FREQUENCY
MAX2067 toc13
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
7
6
5
4
3
2
50 450 850 1050650250
VCC = 4.75V, 5.00V, 5.25V
OUTPUT P1dB vs. RF FREQUENCY
MAX2067 toc14
RF FREQUENCY (MHz)
OUTPUT P1dB (dBm)
21
20
19
18
17
16
15
50 450 850 1050650250
TC = +85°C
TC = +85°C
TC = -40°C
TC = -40°C
TC = +25°C
TC = +25°C
OUTPUT P1dB vs. RF FREQUENCY
MAX2067 toc15
RF FREQUENCY (MHz)
OUTPUT P1dB (dBm)
21
20
19
18
17
16
15
50 450 850 1050650250
VCC = 5.25V
VCC = 4.75V
VCC = 5.00V
OUTPUT IP3 vs. RF FREQUENCY
MAX2067 toc16
RF FREQUENCY (MHz)
OUTPUT IP3 (dBm)
50
40
45
35
30
50 450 850 1050650250
TC = +25°C
POUT = 0dBm/TONE
TC = -40°C
TC = +85°C
OUTPUT IP3 vs. RF FREQUENCY
MAX2067 toc17
RF FREQUENCY (MHz)
OUTPUT IP3 (dBm)
50
40
45
35
30
50 450 850 1050650250
VCC = 5.00V
POUT = 0dBm/TONE
VCC = 4.75V
VCC = 5.25V
OUTPUT IP3 vs.
ATTENUATOR STATE
MAX2067 toc18
DAC CODE
OUTPUT IP3 (dBm)
50
40
45
35
30
0 256192128 2241609632 64
TC = +25°C, +85°C
TONE = LSB, USB
POUT = -3dBm/TONE
fRF = 200MHz
TC = -40°C, TONE = LSB, USB
REVERSE ISOLATION OVER ATTENUATOR
SETTING vs. RF FREQUENCY
MAX2067 toc10
RF FREQUENCY (MHz)
REVERSE ISOLATION (dB)
850450 650250
-25
-35
-45
-55
-65
-75
50 1050
DAC CODE 0
DAC CODE 255
S21 PHASE CHANGE vs.
ATTENUATOR SETTING
MAX2067 toc11
DAC CODE
S21 PHASE CHANGE (DEG)
128 19216032 9664 224
80
70
60
50
40
30
20
10
0
-10
0256
50MHz
200MHz
1000MHz
REFERENCED TO HIGH GAIN STATE.
POSITIVE PHASE = ELECTRICALLY
SHORTER.
450MHz
NOISE FIGURE vs. RF FREQUENCY
MAX2067 toc12
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
7
6
5
4
3
2
50 450 850 1050650250
TC = +85°C
TC = +25°C
TC = -40°C
Typical Operating Characteristics (continued)
(VCC = VDD = +5.0V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
‘ J I \ , k T’“ N 9%? \ \ L\ ‘ éfiowg‘m; k T§§§ \ [MAXI/VI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
8 _______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC = VDD = +5.0V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
2nd HARMONIC vs. RF FREQUENCY
MAX2067 toc19
RF FREQUENCY (MHz)
2nd HARMONIC (dBc)
90
40
50
60
70
80
50 450 850 1050650250
TC = -40°C, +25°C, +85°C
POUT = 3dBm
2nd HARMONIC vs. RF FREQUENCY
MAX2067 toc20
RF FREQUENCY (MHz)
2nd HARMONIC (dBc)
90
80
70
60
50
40
50 450 850 1050650250
VCC = 5.25V
VCC = 4.75V
VCC = 5.00V
POUT = 3dBm
2nd HARMONIC vs.
ATTENUATOR STATE
MAX2067 toc21
DAC CODE
2nd HARMONIC (dBc)
80
70
75
65
60
0 96 160 22432 25619212864
TC = +25°C
POUT = 0dBm
fRF = 200MHz
TC = -40°C
TC = +85°C
3rd HARMONIC vs. FREQUENCY
MAX2067 toc22
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
110
80
90
100
70
60
50 450 850 1050650250
TC = +25°C
POUT = 3dBm
TC = -40°C
TC = +85°C
3rd HARMONIC vs. RF FREQUENCY
MAX2067 toc23
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
110
100
90
80
70
60
50 450 850 1050650250
VCC = 5.25V
VCC = 4.75V
VCC = 5.00V
POUT = 3dBm
3rd HARMONIC vs.
ATTENUATOR STATE
MAX2067 toc24
DAC CODE
3rd HARMONIC (dBc)
110
80
90
100
70
60
0 96 160 22432 25619212864
TC = +25°C
POUT = 0dBm
fRF = 200MHz
TC = -40°C
TC = +85°C
OIP2 vs. RF FREQUENCY
MAX2067 toc25
RF FREQUENCY (MHz)
OIP2 (dBm)
90
40
50
60
70
80
50 450 850 1050650250
TC = -40°C, +25°C, +85°C
POUT = 0dBm/TONE
OIP2 vs. RF FREQUENCY
MAX2067 toc26
RF FREQUENCY (MHz)
OIP2 (dBm)
90
80
70
60
50
40
50 450 850 1050650250
VCC = 5.25V
VCC = 4.75V
VCC = 5.00V
POUT = 0dBm/TONE
OIP2 vs. ATTENUATOR STATE
MAX2067 toc27
DAC CODE
OIP2 (dBm)
80
60
70
50
40
0 96 160 22432 25619212864
TC = +25°C
POUT = -3dBm/TONE
fRF = 200MHz
TC = -40°C
TC = +85°C
[VI/IX I [VI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
_______________________________________________________________________________________ 9
DAC VOLTAGE USING INTERNAL
REFERENCE vs. DAC CODE
MAX2067 toc28
DAC CODE
DAC VOLTAGE (V)
3.0
1.5
2.5
1.0
2.0
0.5
0
0 96 160 22432 25619212864
TC = -40°C, +25°C, +85°C
DAC VOLTAGE USING INTERNAL
REFERENCE vs. DAC CODE
MAX2067 toc29
DAC CODE
DAC VOLTAGE (V)
3.0
1.5
2.5
1.0
2.0
0.5
0
0 96 160 22432 25619212864
VCC = 4.75V, 5.00V, 5.25V
DAC VOLTAGE DRIFT USING
INTERNAL REFERENCE vs. DAC CODE
MAX2067 toc30
DAC CODE
DAC VOLTAGE CHANGE (V)
0.05
0
0.04
-0.01
0.03
0.02
0.01
-0.02
-0.03
-0.04
-0.05
0 96 160 22432 25619212864
TC CHANGED FROM +25°C to +85°C
TC CHANGED FROM +25°C to -40°C
DAC VOLTAGE DRIFT USING
INTERNAL REFERENCE vs. DAC CODE
MAX2067 toc31
DAC CODE
DAC VOLTAGE CHANGE (V)
0.0100
0
0.0075
-0.0025
0.0050
0.0025
-0.0050
-0.0075
-0.0100
0 96 160 22432 25619212864
VCC CHANGED FROM 5.00V to 4.75V
VCC CHANGED FROM 5.00V to 5.25V
Typical Operating Characteristics (continued)
(VCC = VDD = +5.0V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
// [MAXI/VI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
10 ______________________________________________________________________________________
GAIN vs. RF FREQUENCY
(ATTENUATOR ONLY)
MAX2067 toc32
RF FREQUENCY (MHz)
GAIN (dB)
850450 650250
-3
-4
-2
-1
0
-5
50 1050
TC = +25°C
TC = -40°C
TC = +85°C
GAIN vs. RF FREQUENCY
(ATTENUATOR ONLY)
MAX2067 toc33
RF FREQUENCY (MHz)
GAIN (dB)
850450 650250
-3
-4
-2
-1
0
-5
50 1050
VCC = 4.75V, 5.00V, 5.25V
Typical Operating Characteristics (continued)
(VCC = VDD = +5.0V, attenuator only, maximum gain, PIN = -20dBm, and TC= +25°C, unless otherwise noted.)
w \\\ av ‘% // / // // [VI/IX I [VI
GAIN vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc36
RF FREQUENCY (MHz)
GAIN (dB)
22
23
24
19
20
17
18
21
16
50 450 850 1050650250
VCC = 4.75V, 5.00V, 5.25V
GAIN vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc35
RF FREQUENCY (MHz)
GAIN (dB)
22
23
24
19
20
17
18
21
16
50 450 850 1050650250
TC = +25°C
TC = -40°C
TC = +85°C
SUPPLY CURRENT vs. SUPPLY VOLTAGE
(LOW-CURRENT MODE)
MAX2067 toc34
VCC (V)
SUPPLY CURRENT (mA)
65
75
85
55
4.750 5.125 5.2504.875 5.000
TC = +25°C
TC = -40°C
TC = +85°C
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
______________________________________________________________________________________ 11
INPUT MATCH vs. ATTENUATOR SETTING
(LOW-CURRENT MODE)
MAX2067 toc37
DAC CODE
INPUT MATCH (dB)
0
-30
-10
-40
-20
-50
0 96 160 22432 25619212864
50MHz
450MHz
200MHz
1000MHz
OUTPUT MATCH vs. ATTENUATOR SETTING
(LOW-CURRENT MODE)
MAX2067 toc38
DAC CODE
OUTPUT MATCH (dB)
0
-15
-5
-20
-25
-10
-30
0 96 160 22432 25619212864
50MHz
450MHz
200MHz
1000MHz
NOISE FIGURE vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc39
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
6
7
4
3
5
2
50 450 850 1050650250
TC = +25°C
TC = -40°C
TC = +85°C
NOISE FIGURE vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc40
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
6
7
4
3
5
2
50 450 850 1050650250
VCC = 4.75V, 5.00V, 5.25V
OUTPUT P1dB vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc41
RF FREQUENCY (MHz)
OUTPUT P1dB (dBm)
17
18
15
14
16
13
50 450 850 1050650250
TC = +25°C
TC = -40°C
TC = +85°C
O
UTPUT P1dB vs. RF FRE
Q
UEN
C
Y
(LOW-CURRENT MODE)
MAX2067 toc42
RF FREQUENCY (MHz)
OUTPUT P1dB (dBm)
17
18
15
14
16
13
50 450 850 1050650250
VCC = 5.00V
VCC = 5.25V
VCC = 4.75V
Typical Operating Characteristics (continued)
(VCC = VDD = +5.0V, LC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
‘ («Cu \ 2A 3 mm ‘ A “A w ,7 mm H a K m Wu \\ ‘ \ \\ H ‘ E y\ \ ‘ ‘ x? a X ¢ 5 x x ‘ \ \k \ \ \ w \ . [Kr \T Q «A [MAXI/VI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
12 ______________________________________________________________________________________
OUTPUT IP3 vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc43
RF FREQUENCY (MHz)
OUTPUT IP3 (dBm)
40
45
30
35
25
50 450 850 1050650250
TC = -40°C
TC = +85°C
TC = +25°C
POUT = 0dBm/TONE
OUTPUT IP3 vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc44
RF FREQUENCY (MHz)
OUTPUT IP3 (dBm)
40
45
30
35
25
50 450 850 1050650250
POUT = 0dBm/TONE
VCC = 5.00V
VCC = 5.25V
VCC = 4.75V
OUTPUT IP3 vs. ATTENUATOR STATE
(LOW-CURRENT MODE)
MAX2067 toc45
DAC CODE
OUTPUT IP3 (dBm)
45
40
35
30
0256192128 2241609632 64
TC = +25°C, +85°C
TONE = LSB, USB
POUT = -3dBm/TONE
fRF = 200MHz
TC = -40°C, TONE = LSB, USB
2nd HARMONIC vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc46
RF FREQUENCY (MHz)
2nd HARMONIC (dBc)
80
90
60
70
50
40
50 450 850 1050650250
TC = -40°C
TC = +85°C
TC = +25°C
POUT = 3dBm
2nd HARMONIC vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc47
RF FREQUENCY (MHz)
2nd HARMONIC (dBc)
80
90
60
50
70
40
50 450 850 1050650250
POUT = 3dBm
VCC = 5.00V
VCC = 5.25V
VCC = 4.75V
2nd HARMONIC vs. ATTENUATOR STATE
(LOW-CURRENT MODE)
MAX2067 toc48
DAC CODE
2nd HARMONIC (dBc)
90
70
80
60
50
0 96 160 22432 25619212864
TC = +25°C
POUT = 0dBm
fRF = 200MHz
TC = -40°C
TC = +85°C
3rd HARMONIC vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc49
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
90
100
80
70
60
50 450 850 1050650250
TC = -40°C
TC = +85°C
TC = +25°C
POUT = 3dBm
3rd HARMONIC vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc50
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
90
100
70
80
60
50 450 850 1050650250
POUT = 3dBm
VCC = 5.00V VCC = 5.25V
VCC = 4.75V
3rd HARMONIC vs. ATTENUATOR STATE
(LOW-CURRENT MODE)
MAX2067 toc51
DAC CODE
3rd HARMONIC (dBc)
100
85
90
75
95
80
70
0 96 160 22432 25619212864
TC = +25°C
POUT = 0dBm
fRF = 200MHz
TC = -40°C
TC = +85°C
Typical Operating Characteristics (continued)
(VCC = VDD = +5.0V, LC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
/7 )L (V // [VI/IX I [VI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
______________________________________________________________________________________ 13
OIP2 vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc52
RF FREQUENCY (MHz)
OIP2 (dBm)
80
90
70
50
60
40
50 450 850 1050650250
TC = -40°C
TC = +85°C
TC = +25°C
POUT = 0dBm/TONE
OIP2 vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc53
RF FREQUENCY (MHz)
OIP2 (dBm)
80
90
50
60
70
40
50 450 850 1050650250
POUT = 0dBm/TONE
VCC = 5.00V
VCC = 5.25V
VCC = 4.75V
OIP2 vs. ATTENUATOR STATE
(LOW-CURRENT MODE)
MAX2067 toc54
DAC CODE
OIP2 (dBm)
90
70
80
50
60
40
0 96 160 22432 25619212864
TC = +25°C
TC = -40°C
TC = +85°C
POUT = -3dBm/TONE
fRF = 200MHz
Typical Operating Characteristics (continued)
(VCC = VDD = +5.0V, LC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
\ \ \\\ H a \v \ L \\ \\ [MAXI/VI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
14 ______________________________________________________________________________________
SUPPLY CURRENT vs. SUPPLY VOLTAGE
MAX2067 toc55
VCC (V)
SUPPLY CURRENT (mA)
55
65
75
45
3.00 3.45 3.603.15 3.30
TC = +25°C
TC = -40°C
TC = +85°C
GAIN vs. RF FREQUENCY
MAX2067 toc56
RF FREQUENCY (MHz)
GAIN (dB)
22
23
24
19
20
17
18
21
16
50 450 850 1050650250
TC = +25°C
TC = -40°C
TC = +85°C
VCC = 3.3V
GAIN vs. RF FREQUENCY
MAX2067 toc57
RF FREQUENCY (MHz)
GAIN (dB)
23
24
19
17
21
20
18
22
16
50 450 850 1050650250
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
INPUT MATCH vs. ATTENUATOR SETTING
MAX2067 toc58
DAC CODE
INPUT MATCH (dB)
0
-30
-10
-20
-40
0 96 160 22432 25619212864
50MHz
VCC = 3.3V
450MHz 200MHz
1000MHz
OUTPUT MATCH vs. ATTENUATOR SETTING
MAX2067 toc59
DAC CODE
OUTPUT MATCH (dB)
0
-25
-15
-20
-5
-10
-30
0 96 160 22432 25619212864
50MHz
VCC = 3.3V
450MHz
200MHz
1000MHz
NOISE FIGURE vs. RF FREQUENCY
MAX2067 toc60
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
7
5
6
3
4
2
50 450 850 1050650250
TC = +25°C
TC = -40°C
TC = +85°C
VCC = 3.3V
NOISE FIGURE vs. RF FREQUENCY
MAX2067 toc61
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
7
5
3
6
4
2
50 450 850 1050
650250
VCC = 3.0V
VCC = 3.3V
VCC = 3.6V
OUTPUT P1dB vs. RF FREQUENCY
MAX2067 toc62
RF FREQUENCY (MHz)
OUTPUT P1dB (dBm)
15
16
17
12
13
10
11
14
9
50 450 850 1050650250
TC = +25°C
TC = -40°C
TC = +85°C
VCC = 3.3V
OUTPUT P1dB vs. RF FREQUENCY
MAX2067 toc63
RF FREQUENCY (MHz)
OUTPUT P1dB (dBm)
17
14
10
16
12
15
11
13
9
50 450 850650 1050250
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
Typical Operating Characteristics (continued)
(VCC = VDD = +3.3V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
\ \ w 7 \ ‘ \"\\1 \\\£ \? \: \ \ 4 \‘ ‘ Q/AWqWS ks \\ 4\\t\ T \ \\ I \\\ K a k ‘ , \\i \ l T §= , V\ i \ \ [VI/IX I [VI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
______________________________________________________________________________________ 15
OUTPUT IP3 vs. RF FREQUENCY
MAX2067 toc64
RF FREQUENCY (MHz)
OUTPUT IP3 (dBm)
45
40
50
25
30
35
20
50 450 850 1050650250
POUT = 0dBm/TONE
TC = +25°C
TC = -40°C
TC = +85°C
VCC = 3.3V
OUTPUT IP3 vs. RF FREQUENCY
MAX2067 toc65
RF FREQUENCY (MHz)
OUTPUT IP3 (dBm)
40
50
30
35
45
25
20
50 450 850 1050650250
POUT = 0dBm/TONE
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
OUTPUT IP3 vs. ATTENUATOR STATE
MAX2067 toc66
DAC CODE
OUTPUT IP3 (dBm)
45
40
35
30
25
0256192128 2241609632 64
TC = +25°C, +85°C
TONE = LSB, USB
POUT = -3dBm/TONE
fRF = 200MHz
TC = -40°C, TONE = LSB, USB
VCC = 3.3V
2nd HARMONIC vs. RF FREQUENCY
MAX2067 toc67
RF FREQUENCY (MHz)
2nd HARMONIC (dBc)
80
60
70
40
50
30
50 450 850 1050650250
TC = +25°C
TC = -40°C
TC = +85°C
VCC = 3.3V
POUT = 3dBm
2nd HARMONIC vs. RF FREQUENCY
MAX2067 toc68
RF FREQUENCY (MHz)
2nd HARMONIC (dBc)
60
80
40
50
70
30
50 450 850 1050650250
POUT = 3dBm
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
2nd HARMONIC vs. ATTENUATOR STATE
MAX2067 toc69
2nd HARMONIC (dBc)
80
60
70
50
40
TC = -40°C
TC = +85°C
DAC CODE
0256192128 2241609632 64
POUT = 0dBm
fRF = 200MHz
VCC = 3.3V
TC = +25°C
3rd HARMONIC vs. RF FREQUENCY
MAX2067 toc70
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
100
110
70
80
60
90
50
50 450 850 1050650250
TC = +25°C
TC = -40°C
TC = +85°C
VCC = 3.3V
POUT = 3dBm
3rd HARMONIC vs. RF FREQUENCY
MAX2067 toc71
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
80
110
60
70
100
90
50
50 450 850 1050650250
POUT = 3dBm
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
3rd HARMONIC vs. ATTENUATOR STATE
MAX2067 toc72
DAC CODE
3rd HARMONIC (dBc)
100
90
80
70
60
0256192128 2241609632 64
POUT = 0dBm
fRF = 200MHz
TC = +85°C
TC = -40°C
TC = +25°C
VCC = 3.3V
Typical Operating Characteristics (continued)
(VCC = VDD = +3.3V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
/) ) Y( //#—‘ ff 4/ / / m /// [MAXI/VI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
16 ______________________________________________________________________________________
OIP2 vs. RF FREQUENCY
MAX2067 toc73
RF FREQUENCY (MHz)
OIP2 (dBm)
60
70
50
40
30
50 450 850 1050650250
TC = +25°C
TC = -40°C
TC = +85°C
VCC = 3.3V
POUT = 0dBm/TONE
OIP2 vs. RF FREQUENCY
MAX2067 toc74
RF FREQUENCY (MHz)
OIP2 (dBm)
60
70
50
40
30
50 450 850 1050650250
VCC = 3.3V
VCC = 3.0V
VCC = 3.6V
POUT = 0dBm/TONE
OIP2 vs. ATTENUATOR STATE
MAX2067 toc75
DAC CODE
OIP2 (dBm)
70
60
50
40
30
0256192128 2241609632 64
POUT = -3dBm/TONE
fRF = 200MHz
TC = +85°C
TC = -40°C
TC = +25°C
VCC = 3.3V
Typical Operating Characteristics (continued)
(VCC = VDD = +3.3V, HC mode, attenuator set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
[VI/JXI [VI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
______________________________________________________________________________________ 17
Pin Description
PIN NAME DESCRIPTION
1, 16, 19, 22, 24–28,
30, 31, 33–36 GND Ground
2 VREF_SELECT
DAC Reference Voltage Selection Logic Input. Logic 1 = internal DAC reference
voltage, Logic 0 = external DAC reference voltage. Logic input disabled (don’t care)
when VDAC_EN = Logic 0.
3 VDAC_EN DAC Enable/Disable Logic Input. Logic 0 = disable DAC circuit, Logic 1 = enable
DAC circuit.
4 DATA SPI Data Digital Input
5 CLK SPI Clock Digital Input
6CS SPI Chip-Select Digital Input
7 VDD_LOGIC Digital Logic Supply Input. Connect to the digital logic power supply, V
DD
, Bypass
to GND with a 10nF capacitor as close as possible to the pin.
8–15, 23, 29 GND Ground. See the Pin-Compatibility Considerations section.
17 AMP_OUT Driver Amplifier Output (50). See the Typical Application Circuit for details.
18 RSET Driver Amplifier Bias-Setting Input. See the External Bias section.
20 AMP_IN Driver Amplifier Input (50). See the Typical Application Circuit for details.
21 VCC_AMP
Driver Amplifier Supply Voltage Input. Connect to the V
CC
power supply. Bypass to
GND with 1000pF and 10nF capacitors as close as possible to the pin, with the
smaller value capacitor closer to the part.
32 ATTEN_OUT Analog Attenuator Output. Internally matched to 50. Requires an external DC-
blocking capacitor.
37 ATTEN_IN Analog Attenuator Input. Internally matched to 50. Requires an external DC-
blocking capacitor.
38 VCC_ANALOG Analog Bias and Control Supply Voltage Input. Bypass to GND with a 10nF
capacitor as close as possible to the pin.
39 ANALOG_VCTRL Analog Attenuator Voltage-Control Input
40 VREF_IN External DAC Voltage Reference Input
—EP
Exposed Pad. Internally connected to GND. Connect EP to ground for proper RF
performance and enhanced thermal dissipation.
[VIIJXIIM
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
18 ______________________________________________________________________________________
Detailed Description
The MAX2067 high-linearity analog variable-gain ampli-
fier is a general-purpose, high-performance amplifier
designed to interface with 50systems operating in the
50MHz to 1000MHz frequency range.
The MAX2067 integrates an analog attenuator to provide
31dB of total gain control, as well as a driver amplifier
optimized to provide high gain, high IP3, low noise figure,
and low power consumption. For applications that do not
require high linearity, the bias current of the amplifier can
be adjusted by an external resistor to further reduce
power consumption.
The analog attenuator is controlled using an external
voltage or through the SPI-compatible interface using
an on-chip DAC. Because each stage has its own exter-
nal RF input and RF output, this component can be con-
figured to either optimize NF (amplifier configured first),
or OIP3 (amplifier last). The device’s performance fea-
tures include 22dB stand-alone amplifier gain (amplifier
only), 4dB NF at maximum gain (includes attenuator
insertion loss), and a high OIP3 level of +43dBm. Each
of these features makes the MAX2067 an ideal VGA for
numerous receiver and transmitter applications.
In addition, the MAX2067 operates from a single +5V
supply, or a single +3.3V supply with slightly reduced
performance, and has adjustable bias to trade current
consumption for linearity performance.
Analog Attenuator
The MAX2067’s analog attenuator has a dynamic range
of 31dB and is controlled using an external voltage or
through the 3-wire SPI using an on-chip 8-bit DAC. See
the
Applications Information
section and Table 1 for
attenuator programming details. The attenuator can be
used for both static and dynamic power control.
Driver Amplifier
The MAX2067 includes a high-performance driver with
a fixed gain of 22dB. The driver amplifier circuit is opti-
mized for high linearity for the 50MHz to 1000MHz fre-
quency range.
Applications Information
Attenuator Control
The analog attenuator is controlled by either an external
control voltage applied at ANALOG_VCTRL (pin 39) or
by the on-chip 8-bit DAC. Through the utilization of this
control DAC, the user can easily adjust the analog
attenuation in 0.12dB increments through a simple SPI
command. The DAC enable/disable logic-input pin
(VDAC_EN), and the DAC reference voltage selection
logic-input pin (VREF_SELECT) determine how the
attenuator is controlled. When the DAC is enabled,
either the on-chip voltage reference or the external volt-
age reference can be selected. See Table 1 for the
attenuator and DAC operation truth table.
Although this on-chip DAC eliminates the need for an
external analog control voltage, the user still has the
option of disabling the DAC and using an external ana-
log control voltage for instances where additional atten-
uation resolution is needed, or in cases where the gain
trim/automatic gain-control (AGC) loop is purely analog.
SPI Interface and Attenuator Settings
The MAX2067 employs a 3-wire SPI/MICROWIRE™-
compatible serial interface to program the on-chip DAC.
Eight bits of data are shifted in MSB first and framed by
CS. When CS is low, the clock is active and data is
shifted on the rising edge of the clock. When CS transi-
tions high, the data is latched and the attenuator setting
changes (Figure 1). See Table 2 for details on the SPI
data format.
Table 1. Control Logic
VDAC_EN VR EF _ SEL EC T ANALOG ATTENUATOR D/A CONVERTER
0 X Controlled by external control voltage Disabled
1 1 Controlled by on-chip DAC Enabled (DAC uses on-chip voltage reference)
1 0 Controlled by on-chip DAC E nab l ed ( D AC uses exter nal vol tag e r efer ence)
X = Don’t care.
MICROWIRE is a trademark of National Semiconductor Corp.
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
______________________________________________________________________________________ 19
DATA
CLOCK
CS
tEWS tEW
tES
tCW
tCS
DN
MSB LSB
D(N - 1) D1 D0
tCH
Figure 1. SPI Timing Diagram
Table 2. SPI Data Format
FUNCTION BIT DESCRIPTION
D7 Bit 7 (MSB) of on-chip DAC used to program the analog attenuator
D6 Bit 6 of DAC
D5 Bit 5 of DAC
D4 Bit 4 of DAC
D3 Bit 3 of DAC
D2 Bit 2 of DAC
D1 Bit 1 of DAC
On-Chip DAC
D0 (LSB) Bit 0 (LSB) of the on-chip DAC
[VIIJXIIM
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
20 ______________________________________________________________________________________
Table 4. Typical Application Circuit Component Values (HC Mode)
DESIGNATION VALUE SIZE VENDOR DESCRIPTION
C1, C2, C7, C12 10nF 0402 Murata Mfg. Co., Ltd. X7R
C3, C4, C6, C8, C9 1000pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitors
C10, C11 150pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitors
L1 470nH 1008 Coilcraft, Inc. 1008CS-471XJLC
R1, R1A 100402 Panasonic Corp. 1%
R2 (+3.3V applications only) 1k0402 Panasonic Corp. 1%
R3 (+3.3V applications only) 2k0402 Panasonic Corp. 1%
R4 (+5V applications and
using internal DAC only) 47k0402 Panasonic Corp. 1%
U1 40-pin thin QFN-EP
(6mm x 6mm)
Maxim Integrated
Products, Inc. MAX2067ETL+
External Bias
Bias currents for the driver amplifier are set and opti-
mized through external resistors. Resistors R1 and R1A
connected to RSET (pin 18) set the bias current for the
amplifier. The external biasing resistor values can be
increased for reduced current operation at the expense
of performance. See Tables 4 and 5 for details.
Pin-Compatibility Considerations
The MAX2067 is a simplified version of the MAX2065
analog/digital VGA. The MAX2067 does not contain a
digital attenuator and parallel inputs D0–D4. The asso-
ciated input/output pins are internally connected to
ground (Table 3). Ground the unused input/output pins
to optimize isolation.
(
See the
Typical Application
Circuit.)
+5V and +3.3V Supply Voltage
The MAX2067 features an optional +3.3V supply voltage
operation with slightly reduced linearity performance.
Layout Considerations
The pin configuration of the MAX2067 has been opti-
mized to facilitate a very compact physical layout of the
device and its associated discrete components.
The exposed paddle (EP) of the MAX2067’s 40-pin thin
QFN-EP package provides a low thermal-resistance
path to the die. It is important that the PCB on which the
MAX2067 is mounted be designed to conduct heat
from the EP. In addition, provide the EP with a low-
inductance path to electrical ground. The EP must be
soldered to a ground plane on the PCB, either directly
or through an array of plated via holes.
Table 3. MAX2065/MAX2067 Pin
Comparison
PIN MAX2065 MAX2067
8 SER/PAR GND
9 STATE_A GND
10 STATE_B GND
11 D4 GND
12 D3 GND
13 D2 GND
14 D1 GND
15 D0 GND
23 ATTEN2_OUT GND
29 ATTEN2_IN GND
[VI/JXI [VI
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
______________________________________________________________________________________ 21
Table 5. Typical Application Circuit Component Values (LC Mode)
DESIGNATION VALUE SIZE VENDOR DESCRIPTION
C1, C2, C7, C12 10nF 0402 Murata Mfg. Co., Ltd. X7R
C3, C4, C6, C8, C9 1000pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitors
C10, C11 150pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitors
L1 470nH 1008 Coilcraft, Inc. 1008CS-471XJLC
R1 240402 Vishay 1%
R1A 10nF 0402 Murata Mfg. Co., Ltd. X7R
R2 (+3.3V applications only) 1k0402 Panasonic Corp. 1%
R3 (+3.3V applications only) 2k0402 Panasonic Corp. 1%
R4 (+5V applications and
using internal DAC only) 47k0402 Panasonic Corp. 1%
U1 40-pin thin QFN-EP
(6mm x 6mm)
Maxim Integrated
Products, Inc. MAX2067ETL+
[VIIJXIIM
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
22 ______________________________________________________________________________________
VCC_ANALOG
38
13 15
36
GND
ATTEN_IN
14
37
GND GND
16
35
AMP_OUT GND
17
34
GND
33
RSET
18
ATTEN_OUT
32
GND
19
AMP_IN GND
20
31
ANALOG_VCTRL
12
39
VREF_IN
11
40
238
6
CS GND
25
247
VDD_LOGIC GND
5
CLK GND
26
4
DATA GND
27
3GNDVDAC_EN 28
2
VREF_SELECT
VREF_IN
29
229 GND
2110 VCC_AMP
NOTE: REMOVE R4 AND C10 WHEN DRIVING
ANALOG_VCTRL WITH AN EXTERNAL VOLTAGE.
130
GND
GND
+
ANALOG ATTENUATOR
VREF
DAC
EP
DRIVER AMP
SPI INTERFACE
GND
GND
GND
GND
*IN LC MODE, R1A IS A 10nF CAPACITOR.
SEE TABLE 5 FOR DETAILS.
GND
ANALOG_VCTRL
C1
C4
RF OUTPUT
L1
C3
VDD
C11
C12
C10
GND
GND
GND
GND
GND
C2
VCC
VCC
C7C6
VCC
R1
R1A*
R2
R3
C8
C9
RF INPUT
R4
MAX2067
Typical Application Circuit
[MAXIM www.maxi ' omlpackages 21 -D141 MAXIM
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________
23
© 2008 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.
VCC_ANALOG
38
GND
13
GND
15
36
GND
GND ATTEN_IN
14
37
GND GND
16
35
TQFN
EXPOSED PAD ON BOTTOM.
CONNECT EP TO GND.
GND
17
34
GND
33
RSET
AMP_OUT
18
ATTEN_OUT
32
GND
19
AMP_IN GND
20
31
GND ANALOG_VCTRL
12
39
GND VREF_IN
11
40
238
GND GND
6
CS GND
25
247
VDD_LOGIC GND
5
CLK GND
26
4
DATA GND
27
3GNDVDAC_EN 28
2GNDVREF_SELECT 29
229
GND GND
2110
GND VCC_AMP
1
TOP VIEW
30 GND
GND
+
ANALOG ATTENUATOR
VREF
DAC
DRIVER AMP
SPI INTERFACE
MAX2067
Pin Configuration/Functional Block Diagram
Chip Information
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information, go to
www.maxim-ic.com/packages.
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
40 Thin QFN-EP T4066-3 21-0141

Products related to this Datasheet

IC AMP CELLULR 50MHZ-1GHZ 40TQFN
Available Quantity: 24
Unit Price: 24.06
KIT EVAL FOR MAX2067
Available Quantity: 0
Unit Price: 0
IC AMP CELLULR 50MHZ-1GHZ 40TQFN
Available Quantity: 0
Unit Price: 15.624
KIT EVALUATION FOR MAX2067
Available Quantity: 0
Unit Price: 0