AD1582-85 Datasheet

Analog Devices Inc.

Download PDF Datasheet

Datasheet

2.5 V to 5.0 V Micropower, Precision
Series Mode Voltage References
Data Sheet
AD1582/AD1583/AD1584/AD1585
Rev. M Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©19972019 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Series reference (2.5 V, 3 V, 4.096 V, 5 V)
Low quiescent current: 70 µA maximum
Current output capability: ±5 mA
Wide supply range: VIN = VOUT + 200 mV to 12 V
Wideband noise (10 Hz to 10 kHz): 50 µV rms
Specified temperature range: −40°C to +125°C
Compact, surface-mount SOT-23 package
Qualified for automotive applications
APPLICATIONS
Portable, battery-powered equipment; for example,
notebook computers, cellular phones, pagers, PDAs, GPSs,
and DMMs
Computer workstations; suitable for use with a wide range
of video RAMDACs
Smart industrial transmitters
PCMCIA cards
Automotive
Hard disk drives
3 V/5 V, 8-bit/12-bit data converters
PIN CONFIGURATION
V
OUT 1
GND
2
V
IN
3
AD1582/
AD1583/
AD1584/
AD1585
TOP VIEW
(Not to Scale)
00701-001
Figure 1. 3-Lead SOT-23-3 (RT Suffix)
900
800
700
600
2.7 5
SHUNTREFERENCE
1
AD1582 SERIES REFERENCE
200
100
0
500
400
300
I
SUPPLY
(µA)
V
SUPPLY
(V)
1
3.076kSOURCERESISTOR.
00701-002
Figure 2. Supply Current (μA) vs. Supply Voltage (V)
GENERAL DESCRIPTION
The AD1582/AD1583/AD1584/AD1585 are low cost, low power,
low dropout, precision band gap references. These designs are
available as 3-terminal (series) devices and are packaged in the
compact SOT-23, 3-lead surface-mount package. The versatility
of these references makes them ideal for use in battery-powered
3 V or 5 V systems where there can be wide variations in supply
voltage and a need to minimize power dissipation.
The superior accuracy and temperature stability of the AD1582/
AD1583/AD1584/AD1585 result from the precise matching and
thermal tracking of on-chip components. Patented temperature
drift curvature correction design techniques minimize the
nonlinearities in the voltage output temperature characteristic.
The AD1582/AD1583/AD1584/AD1585 series mode devices
source or sink up to 5 mA of load current and operate efficiently
with only 200 mV of required headroom supply. These parts
draw a maximum 70 μA of quiescent current with only a
1.0 μA/V variation with supply voltage. The advantage of
these designs over conventional shunt devices is extraordinary.
Valuable supply current is no longer wasted through an input
series resistor, and maximum power efficiency is achieved at
all input voltage levels.
The AD1582/AD1583/AD1584/AD1585 are available in two
grades, A and B, and are provided in a tiny footprint, the SOT-
23. All grades are specified over the industrial temperature
range of 40°C to +125°C.
Table 1. AD158x Products, Two Electrical Grades
Electrical
Grade
Initial Accuracy Temperature
Coefficient
(ppm°C)
AD1582 AD1583/AD1585 AD1584
B 0.08% 0.10% 0.10% 50
A 0.80% 1.00% 0.98% 100
AD1582/AD1583/AD1584/AD1585 Data Sheet
Rev. M | Page 2 of 17
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Pin Configuration ............................................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 4
AD1582 Specifications ................................................................. 4
AD1583 Specifications ................................................................. 5
AD1584 Specifications ................................................................. 6
AD1585 Specifications ................................................................. 7
Absolute Maximum Ratings ............................................................ 8
ESD Caution .................................................................................. 8
Terminology ...................................................................................... 9
Typical Performance Characteristics ........................................... 10
Theory of Operation ...................................................................... 11
Applications Information .............................................................. 12
Temperature Performance......................................................... 12
Voltage Output Nonlinearity vs. Temperature ....................... 12
Output Voltage Hysteresis ......................................................... 13
Solder Heat Effect ....................................................................... 13
Supply Current vs. Temperature ............................................... 13
Supply Voltage ............................................................................ 13
AC Performance ......................................................................... 13
Noise Performance and Reduction .......................................... 14
Turn-On Time ............................................................................ 14
Dynamic Performance ............................................................... 15
Outline Dimensions ....................................................................... 16
Ordering Guide .......................................................................... 17
Automotive Applications ........................................................... 17
REVISION HISTORY
5/2019—Rev. L to Rev. M
Change to Endnote 1, Table 6 ......................................................... 8
5/2018—Rev. K to Rev. L
Changes to Table 3 ............................................................................ 5
Changes to Ordering Guide .......................................................... 17
10/2017—Rev. J to Rev. K
Change to Features and Table 1 Title ............................................. 1
Changes to Table 2 ............................................................................ 3
Changes to Temperature Range Specified Performance
Parameter and Temperature Range Operating Performance
Parameter; Table 3 ............................................................................ 4
Changes to Temperature Range Specified Performance
Parameter and Temperature Range Operating Performance
Parameter; Table 4 ............................................................................ 5
Changes to Temperature Range Specified Performance
Parameter and Temperature Range Operating Performance
Parameter; Table 5 ............................................................................ 6
Added Solder Heat Effect Section ................................................ 12
Added Figure 14; Renumbered Sequentially .............................. 12
Changes to Ordering Guide .......................................................... 16
Added Automotive Applications Section .................................... 16
Changes to Package Branding Information Section .................. 16
2/2013—Rev. I to Rev. J
Change to Table 6 ............................................................................. 7
Changes to Ordering Guide .......................................................... 16
5/2010—Rev. H to Rev. I
Changes to Figure 10 ...................................................................... 11
Updated Outline Dimensions ....................................................... 16
Changes to Ordering Guide .......................................................... 16
11/2007—Rev. G to Rev. H
Deleted C Grade ................................................................. Universal
Changes to VOERR Parameter ........................................................ 3
Changes to Ordering Guide .......................................................... 16
6/2006—Rev. F to Rev. G
Changes to Features .......................................................................... 1
Changes to General Description ..................................................... 1
2/2006—Rev. E to Rev. F
Updated Format .................................................................. Universal
Changes to Features .......................................................................... 1
Changes to Table 6 ............................................................................. 7
Changes to Ordering Guide .......................................................... 16
6/2005—Rev. D to Rev. E
Changes to Ordering Guide ............................................................ 7
Moved Package Branding Section ................................................... 7
6/2004—Rev. C to Rev. D
Changes to Ordering Guide ............................................................. 6
Updated Outline Dimensions ....................................................... 13
Data Sheet AD1582/AD1583/AD1584/AD1585
Rev. M | Page 3 of 17
12/2002Rev. B to Rev. C
Changes to Features .......................................................................... 1
Changes to General Description ..................................................... 1
Changes to Specifications ................................................................. 2
Changes to Absolute Maximum Ratings ........................................ 6
Replaced TPC 3 ................................................................................. 8
Changes to Temperature Performance Section ............................. 9
Replaced Figure 4 .............................................................................. 9
Changes to Output Voltage Hysteresis Section ........................... 10
Updated SOT-23 Package ............................................................... 13
3/1997Revision 0: Initial Version
AD1582/AD1583/AD1584/AD1585 Data Sheet
Rev. M | Page 4 of 17
SPECIFICATIONS
AD1582 SPECIFICATIONS
TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted.
Table 2.
AD1582A AD1582B
Parameter Min Typ Max Min Typ Max Unit
OUTPUT VOLTAGE (at 25°C)
V
O
2.480
2.520
2.498
2.500
2.502
V
INITIAL ACCURACY ERROR (at 25°C)
VOERR 20 +20 2 +2 mV
−0.80 +0.80 −0.08 +0.08 %
VOERR (W-Grade) −6 +6 mV
−0.24 +0.24 %
OUTPUT VOLTAGE TEMPERATURE DRIFT 100 50 ppm/°C
TEMPERATURE COEFFICIENT (TCVO)
−40°C < T
A
< +125°C
100
18
50
ppm/°C
0°C < TA < 70°C 35 15 ppm/°C
MINIMUM SUPPLY HEADROOM (VINVOUT) 200 200 mV
LOAD REGULATION
0 mA < IOUT < 5 mA (−40°C to +85°C) 0.2 0.2 mV/mA
0 mA < IOUT < 5 mA (−40°C to +125°C) 0.4 0.4 mV/mA
−5 mA < I
OUT
< 0 mA (−40°C to +85°C)
0.25
0.25
mV/mA
−5 mA < IOUT < 0 mA (−40°C to +125°C) 0.45 0.45 mV/mA
−0.1 mA < IOUT < +0.1 mA (−40°C to +85°C) 2.7 2.7 mV/mA
−0.1 mA < IOUT < +0.1 mA (−40°C to +125°C) 3.5 3.5 mV/mA
LINE REGULATION
VOUT + 200 mV < VIN < 12 V
IOUT = 0 mA 25 25 µV/V
RIPPLE REJECTION (ΔVOUT/ΔVIN)
VIN = 5 V ± 100 mV (f = 120 Hz) 80 80 dB
QUIESCENT CURRENT 70 70 µA
SHORT-CIRCUIT CURRENT TO GROUND
15
15
mA
NOISE VOLTAGE (at 25°C)
0.1 Hz to 10 Hz 70 70 µV p-p
10 Hz to 10 kHz 50 50 µV rms
TURN-ON SETTLING TIME TO 0.1%
CL = 0.2 µF 100 100 µs
LONG-TERM STABILITY
1000 Hours at 25°C 100 100 ppm/1000 hr
OUTPUT VOLTAGE HYSTERESIS 115 115 ppm
TEMPERATURE RANGE
Specified Performance (A, B) −40 +125 40 +125 °C
Operating Performance (A, B) −55 +125 −55 +125 °C
Data Sheet AD1582/AD1583/AD1584/AD1585
Rev. M | Page 5 of 17
AD1583 SPECIFICATIONS
TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted.
Table 3.
AD1583A AD1583B
Parameter
Min
Typ
Max
Min
Typ
Max
Unit
OUTPUT VOLTAGE (at 25°C)
VO 2.970 3.000 3.030 2.997 3.000 3.003 V
INITIAL ACCURACY ERROR (at 25°C)
VOERR −30 +30 −3 +3 mV
−1.0 +1.0 −0.1 +0.1 %
VOERR (W Grade) −8 +8 mV
−0.27
+0.27
%
OUTPUT VOLTAGE TEMPERATURE DRIFT 100 50 ppm/°C
TEMPERATURE COEFFICIENT (TCVO)
40°C < TA < +125°C 40 100 18 50 ppm/°C
0°C < TA < 70°C 35 15 ppm/°C
MINIMUM SUPPLY HEADROOM (VINVOUT) 200 200 mV
LOAD REGULATION
0 mA < IOUT < 5 mA (−40°C to +85°C) 0.25 0.25 mV/mA
0 mA < IOUT < 5 mA (−40°C to +125°C) 0.45 0.45 mV/mA
5 mA < IOUT < 0 mA (40°C to +85°C) 0.40 0.40 mV/mA
5 mA < I
OUT
< 0 mA (−40°C to +125°C)
0.6
0.6
mV/mA
0.1 mA < IOUT < +0.1 mA (40°C to +85°C) 2.9 2.9 mV/mA
0.1 mA < IOUT < +0.1 mA (−40°C to +125°C) 3.7 3.7 mV/mA
LINE REGULATION
VOUT + 200 mV < VIN < 12 V
IOUT = 0 mA 25 25 µV/V
RIPPLE REJECTION (ΔVOUT/ΔVIN)
V
IN
= 5 V ± 100 mV (f = 120 Hz)
80
80
dB
QUIESCENT CURRENT 70 70 µA
SHORT-CIRCUIT CURRENT TO GROUND 15 15 mA
NOISE VOLTAGE (at 25°C)
0.1 Hz to 10 Hz 85 85 µV p-p
10 Hz to 10 kHz 60 60 µV rms
TURN-ON SETTLING TIME TO 0.1%
CL = 0.2 µF 120 120 µs
LONG-TERM STABILITY
1000 Hours at 25°C 100 100 ppm/1000 hr
OUTPUT VOLTAGE HYSTERESIS 115 115 ppm
TEMPERATURE RANGE
Specified Performance (A, B) −40 +125 −40 +125 °C
Operating Performance (A, B) −55 +125 −55 +125 °C
AD1582/AD1583/AD1584/AD1585 Data Sheet
Rev. M | Page 6 of 17
AD1584 SPECIFICATIONS
TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted.
Table 4.
AD1584A AD1584B
Parameter
Min
Typ
Max
Min
Typ
Max
Unit
OUTPUT VOLTAGE (at 25°C)
VO 4.056 4.096 4.136 4.092 4.096 4.100 V
INITIAL ACCURACY ERROR (at 25°C)
VOERR −40 +40 −4 +4 mV
−0.98 +0.98 −0.1 +0.1 %
OUTPUT VOLTAGE TEMPERATURE DRIFT 100 50 ppm/°C
TEMPERATURE COEFFICIENT (TCVO)
−40°C < TA < +125°C 40 100 18 50 ppm/°C
0°C < TA < 70°C 35 15 ppm/°C
MINIMUM SUPPLY HEADROOM (VINVOUT) 200 200 mV
LOAD REGULATION
0 mA < IOUT < 5 mA (−40°C to +85°C) 0.32 0.32 mV/mA
0 mA < IOUT < 5 mA (−40°C to +125°C) 0.52 0.52 mV/mA
−5 mA < IOUT < 0 mA (−40°C to +85°C) 0.40 0.40 mV/mA
−5 mA < IOUT < 0 mA (−40°C to +125°C) 0.6 0.6 mV/mA
−0.1 mA < IOUT < +0.1 mA (−40°C to +85°C) 3.2 3.2 mV/mA
−0.1 mA < I
OUT
< +0.1 mA (−40°C to +125°C)
4.1
4.1
mV/mA
LINE REGULATION
VOUT + 200 mV < VIN 12 V
IOUT = 0 mA 25 25 µV/V
RIPPLE REJECTION (ΔVOUT/ΔVIN)
VIN = 5 V ± 100 mV (f = 120 Hz) 80 80 dB
QUIESCENT CURRENT 70 70 µA
SHORT-CIRCUIT CURRENT TO GROUND 15 15 mA
NOISE VOLTAGE (at 25°C)
0.1 Hz to 10 Hz 110 110 µV p-p
10 Hz to 10 kHz 90 90 µV rms
TURN-ON SETTLING TIME TO 0.1%
C
L
= 0.2 µF
140
140
µs
LONG-TERM STABILITY
1000 Hours at 25°C 100 100 ppm/1000 hr
OUTPUT VOLTAGE HYSTERESIS 115 115 ppm
TEMPERATURE RANGE
Specified Performance (A, B) −40 +125 −40 +125 °C
Operating Performance (A, B) −55 −125 −55 +125 °C
Data Sheet AD1582/AD1583/AD1584/AD1585
Rev. M | Page 7 of 17
AD1585 SPECIFICATIONS
TA = TMIN to TMAX, VIN = 6 V, unless otherwise noted.
Table 5.
AD1585A AD1585B
Parameter
Min
Typ
Min
Typ
Max
Unit
OUTPUT VOLTAGE (at 25°C)
VO 4.950 5.000 5.050 4.995 5.000 5.005 V
INITIAL ACCURACY ERROR (at 25°C)
VOERR −50 +50 −5 +5 mV
−1.0 +1.0 −0.10 +0.10 %
OUTPUT VOLTAGE TEMPERATURE DRIFT 100 50 ppm/°C
TEMPERATURE COEFFICIENT (TCVO)
40°C < TA < 125°C 40 100 18 50 ppm/°C
0°C < TA < 70°C 35 15 ppm/°C
MINIMUM SUPPLY HEADROOM (VINVOUT) 200 200 mV
LOAD REGULATION
0 mA < IOUT < 5 mA (−40°C to +85°C) 0.40 0.40 mV/mA
0 mA < IOUT < 5 mA (−40°C to +125°C) 0.6 0.6 mV/mA
−5 mA < IOUT < 0 mA (−40°C to +85°C) 0.40 0.40 mV/mA
−5 mA < IOUT < 0 mA (−40°C to +125°C) 0.6 0.6 mV/mA
−0.1 mA < IOUT < +0.1 mA (−40°C to +85°C) 4 4 mV/mA
−0.1 mA < I
OUT
< +0.1 mA (−40°C to +125°C)
4.8
mV/mA
LINE REGULATION
VOUT + 200 mV < VIN < 12 V
IOUT = 0 mA 25 25 µV/V
RIPPLE REJECTION (ΔVOUT/ΔVIN)
VIN = 6 V ± 100 mV (f = 120 Hz) 80 80 dB
QUIESCENT CURRENT 70 70 µA
SHORT-CIRCUIT CURRENT TO GROUND 15 15 mA
NOISE VOLTAGE (at 25°C)
0.1 Hz to 10 Hz 140 140 µV p-p
10 Hz to 10 kHz 100 100 µV rms
TURN-ON SETTLING TIME TO 0.1%
C
L
= 0.2 μF
175
µs
LONG-TERM STABILITY
1000 Hours at 25°C 100 100 ppm/1000 hr
OUTPUT VOLTAGE HYSTERESIS 115 115 ppm
TEMPERATURE RANGE
Specified Performance (A, B) −40 +125 40 +125 °C
Operating Performance (A, B) 55 +125 −55 +125 °C
AD1582/AD1583/AD1584/AD1585 Data Sheet
Rev. M | Page 8 of 17
ABSOLUTE MAXIMUM RATINGS
Table 6.
Parameter Rating
VIN to Ground 12 V
Internal Power Dissipation
1
SOT-23-3 (RT-3) 400 mW
Storage Temperature Range 65°C to 150°C
Specified Temperature Range
AD1582RT/AD1583RT/
AD1584RT/AD1585RT
−40°C to +125°C
Lead Temperature, Soldering
Vapor Phase (60 sec) 215°C
Infrared (15 sec) 220°C
1 This specification is for a device in free air at 25°C; for a SOT-23 package, θJA =
300°C/W.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
ESD CAUTION
Data Sheet AD1582/AD1583/AD1584/AD1585
Rev. M | Page 9 of 17
TERMINOLOGY
Temperature Coefficient (TCVO)
The change of output voltage over the operating temperature
change and normalized by the output voltage at 25°C, expressed
in ppm/°C. The equation follows
[ ]
( ) ( )
( )
( )
6
10
25
Cppm/ ×
×°
=°
12
O
1
O
2
O
O
TTCV
TVTV
TCV
where:
VO (25°C) = VO at 25°C.
VO (T1) = VO at Temperature 1.
VO (T2) = VO at Temperature 2.
Line Regulation (ΔVO/ΔVIN) Definition
The change in output voltage due to a specified change in input
voltage. It includes the effects of self-heating. Line regulation is
expressed in either percent per volt, parts per million per volt,
or microvolts per volt change in input voltage.
Load Regulation (ΔVO/ΔILOAD)
The change in output voltage due to a specified change in load
current. It includes the effects of self-heating. Load regulation
is expressed in either microvolts per milliampere, parts per
million per milliampere, or ohms of dc output resistance.
Long-Term Stability (ΔVO)
Typical shift of output voltage at 25°C on a sample of parts
subjected to an operation life test of 1000 hours at 125°C.
( )
( )
1
O
0
OO
t
VtV
V=
[]
( )
( )
( )
6
10ppm ×
=
0
O
1
O
0
O
O
tV
tVtV
V
where:
VO (t0) = VO at 25°C at Time 0.
VO (t1) = VO at 25°C after 1000 hours of operation at 125°C.
Thermal Hysteresis (VO_HYS)
The change of output voltage after the device is cycled through
temperatures from +25°C to −40°C to +85°C and back to +25°C.
This is a typical value from a sample of parts put through
such a cycle
( )
TCO
OHYSOVCVV _
_25 °=
[ ]
( )
( )
6
_
_10
25
25
ppm ×
°
°
=CV
VCV
V
O
TCO
O
HYSO
where:
VO (25°C) = VO at 25°C.
VO_TC = VO at 25°C after temperature cycle at +25°C to −40°C to
+85°C and back to +25°C.
Operating Temperature
The temperature extremes at which the device can still function.
Parts can deviate from their specified performance outside the
specified temperature range.
AD1582/AD1583/AD1584/AD1585 Data Sheet
Rev. M | Page 10 of 17
TYPICAL PERFORMANCE CHARACTERISTICS
6
0
14
8
4
2
12
10
NUMBER OF PARTS
22
16
20
18
ppm/°C
–60 –50 –40 –30 –20 –10 0 10 20 30 40 50
00701-003
Figure 3. Typical Output Voltage Temperature Drift Distribution
50
15
0
45
20
10
5
35
25
40
30
V
OUT
(ERROR)
NUMBER OF PARTS
1.0%0.6%0.2%–0.2%–0.6%–1.0%
00701-004
Figure 4. Typical Output Voltage Error Distribution
2.504
2.502
2.494
2.492
2.490
2.488
2.500
2.496
2.498
TEMPERATURE (°C)
–40 0–20 20 40 60 80 100 120
V
OUT
00701-005
DEVICE 1
DEVICE 2
DEVICE 3
Figure 5. Typical Temperature Drift Characteristic Curves
0
0.25
0.20
0.15
0.10
0.35
0.30
0.40
0.05
mV/mA
024681012
V
IN
(V)
AD1585
AD1582
0
0701-006
Figure 6. Load Regulation vs. VIN
–20
–40
–60
–80
–70
–30
–50
µV/
V
0
–90
–10
AD1585
AD1582
I
OUT
(mA)
–5 –4 –3 –2 –1 0 1 2 3 4 5
00701-007
Figure 7. Line Regulation vs. ILOAD
10k
1k10010
100
1k
10k 100k
FREQUENCY (Hz)
I
OUT
= 1mA
I
OUT
= 0mA
nV/ Hz
0
0701-008
Figure 8. Noise Spectral Density
Data Sheet AD1582/AD1583/AD1584/AD1585
Rev. M | Page 11 of 17
THEORY OF OPERATION
The AD1582/AD1583/AD1584/AD1585 use the band gap
concept to produce stable, low temperature coefficient voltage
references suitable for high accuracy data acquisition compo-
nents and systems. These parts of precision references use the
underlying temperature characteristics of a silicon transistor’s
base emitter voltage in the forward-biased operating region.
Under this condition, all such transistors have a −2 mV/°C
temperature coefficient (TC) and a VBE that, when extrapolated
to absolute zero, 0 K (with collector current proportional to
absolute temperature), approximates the silicon band gap voltage.
By summing a voltage that has an equal and opposite tempera-
ture coefficient of 2 mV/°C with the VBE of a forward-biased
transistor, an almost 0 TC reference can be developed. In the
AD1582/AD1583/AD1584/AD1585 simplified circuit diagram
shown in Figure 9, such a compensating voltage, V1, is derived
by driving two transistors at different current densities and
amplifying the resultant VBE difference (∆VBE, which has a positive
TC). The sum of VBE and V1 (VBG) is then buffered and amplified
to produce stable reference voltage outputs of 2.5 V, 3 V, 4.096 V,
a n d 5 V.
R4
R6
R5
GND
V1
+
R3
+
R2
R1
V
IN
V
OUT
V
BG
V
BE
00701-009
Figure 9. Simplified Schematic
AD1582/AD1583/AD1584/AD1585 Data Sheet
Rev. M | Page 12 of 17
APPLICATIONS INFORMATION
The AD1582/AD1583/AD1584/AD1585 are series references
that can be used for many applications. To achieve optimum
performance with these references, only two external compo-
nents are required. Figure 10 shows the AD1582/AD1583/
AD1584/AD1585 configured for operation under all loading
conditions. With a simple 4.7 µF capacitor attached to the input
and a 1 µF capacitor applied to the output, the devices can
achieve specified performance for all input voltage and output
current requirements. For best transient response, add a 0.1 µF
capacitor in parallel with the 4.7 µF capacitor. While a 1 µF output
capacitor can provide stable performance for all loading
conditions, the AD1582/AD1583/AD1584/AD1585 can operate
under low (−100 µA < IOUT < +100 µA) current conditions with
just a 0.2 µF output capacitor. The 4.7 µF capacitor on the input
can be reduced to 1 F in this condition.
Unlike conventional shunt reference designs, the AD1582/
AD1583/AD1584/AD1585 provide stable output voltages at
constant operating current levels. When properly decoupled,
as shown in Figure 10, these devices can be applied to any
circuit and provide superior low power solutions.
V
OUT
1
2
V
IN
3
AD1582/
AD1583/
AD1584/
AD1585
1µF
4.7µF
+
00701-010
Figure 10. Typical Connection Diagram
TEMPERATURE PERFORMANCE
The AD1582/AD1583/AD1584/AD1585 are designed for
applications where temperature performance is important.
Extensive temperature testing and characterization ensure
that device performance is maintained over the specified
temperature range.
The error band guaranteed with the AD1582/AD1583/AD1584/
AD1585 is the maximum deviation from the initial value at 25°C.
Therefore, for a given grade of the AD1582/AD1583/AD1584/
AD1585, the designer can easily determine the maximum total
error by summing initial accuracy and temperature variation. For
example, for the AD1582BRT, the initial tolerance is ±2 mV,
and the temperature error band is ±8 mV; therefore, the reference
is guaranteed to be 2.5 V ± 10 mV from −40°C to +125°C.
Figure 11 shows the typical output voltage drift for the AD1582/
AD1583/AD1584/AD1585 and illustrates the methodology. The
box in Figure 11 is bounded on the x-axis by operating tempera-
ture extremes. It is bounded on the y-axis by the maximum
and minimum output voltages observed over the operating
temperature range. The slope of the diagonal drawn from the
initial output value at 25°C to the output values at +125°C and
−40°C determines the performance grade of the device.
Duplication of these results requires a test system that is highly
accurate with stable temperature control. Evaluation of the
AD1582/AD1583/AD1584/AD1585 produces curves similar
to those in Figure 5 and Figure 11, but output readings can vary
depending on the test methods and test equipment used.
2.504
2.502
2.500
2.498
2.496
2.494
2.492
TEMPERATURE (°C)
V
OUT
(V)
–40 –20 0 20 40 60 80 100 120
2.504
2.502
2.500
2.498
2.496
2.494
2.492
TEMPERATURE (°C)
V
OUT
(V)
–40 –20 0 20 40 60 80 100 120
00701-011
Figure 11. Output Voltage vs. Temperature
VOLTAGE OUTPUT NONLINEARITY VS.
TEMPERATURE
When using a voltage reference with data converters, it is
important to understand the impact that temperature drift can
have on converter performance. The nonlinearity of the reference
output drift represents additional error that cannot be easily
calibrated out of the overall system. To better understand the
impact such a drift can have on a data converter, refer to Figure 12,
where the measured drift characteristic is normalized to the
endpoint average drift. The residual drift error for the AD1582/
AD1583/AD1584/AD1585 of approximately 200 ppm demon-
strates that these parts are compatible with systems that require
12-bit accurate temperature performance.
250
200
150
100
50
0
–50
TEMPERATURE (°C)
–50 –25 0 25 50 75 100
ΔV
OUT
(ppm)
0
0701-012
Figure 12. Residual Drift Error
Data Sheet AD1582/AD1583/AD1584/AD1585
Rev. M | Page 13 of 17
OUTPUT VOLTAGE HYSTERESIS
High performance industrial equipment manufacturers can
require the AD1582/AD1583/AD1584/AD1585 to maintain a
consistent output voltage error at 25°C after the references are
operated over the full temperature range. All references exhibit
a characteristic known as output voltage hysteresis; however, the
AD1582/AD1583/AD1584/AD1585 are designed to minimize
this characteristic. This phenomenon can be quantified by
measuring the change in the +25°C output voltage after
temperature excursions from +125°C to +25°C and from −40°C
to +25°C. Figure 13 displays the distribution of the
AD1582/AD1583/AD1584/AD1585 output voltage hysteresis.
80
70
60
50
–700–450–200 50 300550
NUMBER OF PARTS
40
30
20
10
0
ppm
00701-013
Figure 13. Output Voltage Hysteresis Distribution
SOLDER HEAT EFFECT
The mechanical stress and heat effect of soldering a device to a
printed circuit board (PCB) can cause the output voltage of a
reference to shift in value. The materials that make up a
semiconductor device and its package have different rates of
expansion and contraction. If the stress on the die has changed
position, it can cause a shift on the output voltage after being
exposed to extreme soldering temperatures. This shift is similar
to, but more severe than, thermal hysteresis. Typical result
of soldering temperature effects on the AD1582/AD1583/
AD1584/AD1585 output values shift is shown in Figure 14.
Figure 14 shows the output shift due to soldering and does not
include mechanical stress.
OUTPUT SHFT DUE TO SOLDER HEAT EFFECT (%)
NUMBER OF UNITS
60
50
40
30
20
10
0
–0.20 –0.15 –0.10 –0.05 00.05 0.10 0.15 0.20
00701-114
Figure 14. Output Shift due to Solder Heat Effect
SUPPLY CURRENT VS. TEMPERATURE
The quiescent current for the AD1582/AD1583/AD1584/
AD1585 varies slightly over temperature and input supply
range. Figure 15 illustrates the typical performance for the
AD1582/AD1583/AD1584/AD1585 reference when varying
both temperature and supply voltage. As is evident from
Figure 15, the AD1582/AD1583/AD1584/AD1585 supply
current increases only 1.0 µA/V, making this device extremely
attractive for use in applications where there can be wide
variations in supply voltage and a need to minimize power
dissipation.
100
80
60
40
20
0
IQ (µA)
VIN (V)
34 5 6 7 8 9 10 11
TA= +25°C
TA= +85°C
TA=–40°C
00701-014
Figure 15. Typical Supply Current over Temperature
SUPPLY VOLTAGE
One of the ideal features of the AD1582/AD1583/AD1584/AD1585
is low supply voltage headroom. The parts can operate at supply
voltages as low as 200 mV above VOUT and up to 12 V. However,
if negative voltage is inadvertently applied to VIN with respect to
ground, or any negative transient >5 V is coupled to VIN, the
device can be damaged.
AC PERFORMANCE
To apply the AD1582/AD1583/AD1584/AD1585, it is impor-
tant to understand the effects of dynamic output impedance
and power supply rejection. In Figure 16, a voltage divider
is formed by the AD1582/AD1583/AD1584/ AD1585 output
impedance and by the external source impedance. Figure 17
shows the effect of varying the load capacitor on the reference
output. Power supply rejection ratio (PSRR) should be determined
when characterizing the ac performance of a series voltage
reference. Figure 18 shows a test circuit used to measure PSRR,
and Figure 19 demonstrates the ability of the AD1582/AD1583/
AD1584/AD1585 to attenuate line voltage ripple.
5V
5µF
F
2 × V
OUT
10k10k
2k
10k
±2V
±100µA
×1
V
LOAD
DC
DUT
00701-015
Figure 16. Output Impedance Test Circuit
AD1582/AD1583/AD1584/AD1585 Data Sheet
Rev. M | Page 14 of 17
100
AD1585
AD1582
10
1
0.1
10 100 1k 10k 100k 1M
FREQUENCY (Hz)
OUTPUT IMPEDANCE (Ω)
F CAP
0
0701-016
Figure 17. Output Impedance vs. Frequency
5V ± 100mV
0.2F
0.22µF
10V 10kΩ
10kΩ
±200mV
×1
DUT V
OUT
0
0701-017
Figure 18. Ripple Rejection Test Circuit
100
90
0
11M10 100 1k 10k 100k
50
20
80
70
60
40
30
10
AD1582
AD1585
PSRR (dB)
FREQUENCY (Hz)
00701-018
Figure 19. Ripple Rejection vs. Frequency
NOISE PERFORMANCE AND REDUCTION
The noise generated by the AD1582/AD1583/AD1584/AD1585 is
typically less than 70 μV p-p over the 0.1 Hz to 10 Hz frequency
band. Figure 20 shows the 0.1 Hz to 10 Hz noise of a typical
AD1582/AD1583/AD1584/AD1585. The noise measurement is
made with a high gain band-pass filter. Noise in a 10 Hz to
10 kHz region is approximately 50 μV rms. Figure 21 shows the
broadband noise of a typical AD1582/AD1583/AD1584/
AD1585. If further noise reduction is desired, add a 1-pole,
low-pass filter between the output pin and ground. A time
constant of 0.2 ms has a −3 dB point at roughly 800 Hz and
reduces the high frequency noise to about 16 V rms. It should
be noted, however, that while additional filtering on the output
can improve the noise performance of the AD1582/AD1583/
AD1584/AD1585, the added output impedance can degrade the
ac performance of the references.
100
90
10
0%
10µV 1s
00701-019
Figure 20. 10 Hz to 10 kHz Wideband Noise
10
0%
100
90
10ms
100µV
00701-020
Figure 21. 1 Hz to 10 Hz Voltage Noise
TURN-ON TIME
Many low power instrument manufacturers are concerned
with the turn-on characteristics of the components used in
their systems. Fast turn-on components often enable the end
user to save power by keeping power off when not needed.
Turn-on settling time is defined as the time required, after the
application of power (cold start), for the output voltage to reach
its final value within a specified error. The two major factors
affecting this are the active circuit settling time and the time
required for the thermal gradients on the chip to stabilize.
Figure 22 shows the turn-on settling and transient response test
circuit. Figure 23 shows the turn-on characteristics of the
AD1582/AD1583/ AD1584/AD1585. These characteristics are
generated from cold-start operation and represent the true
turn-on waveform after power-up. Figure 24 shows the fine
settling characteristics of the AD1582/AD1583/AD1584/
AD1585. Typically, the reference settles to within 0.1% of its
final value in about 100 μs.
The device can momentarily draw excessive supply current
when VSUPPLY is slightly below the minimum specified level.
Power supply resistance must be low enough to ensure reliable
turn-on. Fast power supply edges minimize this effect.
Data Sheet AD1582/AD1583/AD1584/AD1585
Rev. M | Page 15 of 17
0.2F
0.22µF
0
V
OR 10
V
0V TO 10V
10kΩ
10kΩ
DUT
VOUT
5V OR 10V
0V OR 5V
00701-021
Figure 22. Turn-On/Transient Response Test Circuit
10
0%
100
5V
1V 20µs
20µs
90
00701-022
Figure 23. Turn-On Characteristics
10
0%
100
5V
1mV 20µs
20µs
90
00701-023
Figure 24. Turn-On Settling
DYNAMIC PERFORMANCE
Many ADCs and DACs present transient current loads to the
reference and poor reference response can degrade converter
performance. The AD1582/AD1583/AD1584/AD1585 provide
superior static and dynamic line and load regulation. Because
these series references are capable of both sourcing and sinking
large current loads, they exhibit excellent settling characteristics.
Figure 25 displays the line transient response for the AD1582/
AD1583/AD1584/AD1585. The circuit used to perform such
a measurement is shown in Figure 22, where the input supply
voltage is toggled from 5 V to 10 V, and the input and output
capacitors are each 0.22 μF.
Figure 26 and Figure 27 show the load transient settling cha-
racteristics for the AD1582/AD1583/AD1584/AD1585 when
load current steps of 0 mA to +5 mA and 0 mA to −1 mA are
applied. The input supply voltage remains constant at 5 V; the
input decoupling and output load capacitors are 4.7 μF and 1 μF,
respectively; and the output current is toggled. For both positive
and negative current loads, the reference responses settle very
quickly and exhibit initial voltage spikes of less than 10 mV.
10
0%
100
90
5V
200mV 50µs
50µs
00701-024
Figure 25. Line Transient Response
10
0%
100
5V
5mV
90
20µs
20µs
0
0701-025
Figure 26. Load Transient Response (0 mA to 5 mA Load)
0%
100
90
5V
20µs
20µs
5mV
10
00701-026
Figure 27. Load Transient Response (0 mA to −1 mA Load)
AD1582/AD1583/AD1584/AD1585 Data Sheet
Rev. M | Page 16 of 17
OUTLINE DIMENSIONS
3.04
2.90
2.80
COMPLIANT TO JEDEC STANDARDS TO-236-AB
011909-C
12
3
SEATING
PLANE
2.64
2.10
1.40
1.30
1.20
2.05
1.78
0.100
0.013
1.03
0.89
0.60
0.45
0.51
0.37
1.12
0.89 0.180
0.085
0.25
0.54
REF
GAUGE
PLANE
0.60 MAX
0.30 MIN
1.02
0.95
0.88
Figure 28. 3-Lead Small Outline Transistor Package [SOT-23-3]
(RT-3)
Dimensions shown in millimeters
053006-0
20.20
MIN
1.00 MIN 0.75 MIN
1.10
1.00
0.90
1.50 MIN
7” REEL 100.00
OR
13” REEL 330.00
7” REEL 50.00 MIN
OR
13” REEL 100.00 MIN
DIRECTION OF UNREELING
0.35
0.30
0.25
2.80
2.70
2.60
1.55
1.50
1.45
4.10
4.00
3.90 1.10
1.00
0.90
2.05
2.00
1.95
8.30
8.00
7.70
3.20
3.10
2.90
3.55
3.50
3.45
13.20
13.00
12.80
14.40 MIN
9.90
8.40
6.90
Figure 29. SOT-23 Tape and Reel Outline Dimension
(RT-3)
Dimensions shown in millimeters
Data Sheet AD1582/AD1583/AD1584/AD1585
Rev. M | Page 17 of 17
ORDERING GUIDE
Model1, 2
Output
Voltage (V) Accuracy (mV)
Initial
Accuracy (%)
Initial Temperature
Coefficient (ppm/°C)
Package
Description
Package
Option
Marking
Code
No. of
Parts
Banding
per Reel
AD1582ARTZ-REEL7 2.50 20 0.80 100 SOT-23-3 RT-3 R1Z 3,000
AD1582BRTZ-REEL7 2.50 2 0.08 50 SOT-23-3 RT-3 R20 3,000
AD1582WBRTZ-R7 2.50 6 0.24 50 SOT-23-3 RT-3 R20 3,000
AD1583ARTZ-REEL7 3.00 30 1.00 100 SOT-23-3 RT-3 R22 3,000
AD1583BRTZ-REEL7 3.00 3 0.10 50 SOT-23-3 RT-3 R23 3,000
AD1583WBRTZ-R7 3.00 8 0.27 50 SOT-23-3 RT-3 R23 3,000
AD1584ARTZ-REEL7 4.096 40 0.98 100 SOT-23-3 RT-3 R25 3,000
AD1584BRTZ-REEL7 4.096 4 0.10 50 SOT-23-3 RT-3 R26 3,000
AD1585ARTZ-REEL7 5.00 50 1.00 100 SOT-23-3 RT-3 R28 3,000
AD1585BRTZ-REEL7 5.00 5 0.10 50 SOT-23-3 RT-3 R29 3,000
1 Z = RoHS Compliant Part.
2 W = Qualified for Automotive Applications.
AUTOMOTIVE APPLICATIONS
The AD1582W and AD1583W models are available with controlled manufacturing to support the quality and reliability requirements of
automotive applications. Note that these models may have specifications that differ from the commercial models; therefore, designers
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to
obtain the specific Automotive Reliability reports for these models.
©1997–2019 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D00701-0-5/19(M)

Products

IC VREF SERIES 2.5V SOT23-3
Available Quantity3651
Unit Price2.68
IC VREF SERIES 2.5V SOT23-3
Available Quantity10261
Unit Price3.75
IC VREF SERIES 4.096V SOT23-3
Available Quantity4917
Unit Price3.75
IC VREF SERIES 3V SOT23-3
Available Quantity4814
Unit Price2.68
IC VREF SERIES 4.096V SOT23-3
Available Quantity1409
Unit Price2.68
IC VREF SERIES 5V SOT23-3
Available Quantity1271
Unit Price3.75
IC VREF SERIES 3V SOT23-3
Available Quantity72
Unit Price3.75
IC, 2.5V MICROPOWER REF
Available Quantity0
Unit Price2.18451
IC, 3V MICROPOWER REF
Available Quantity0
Unit Price2.18451
IC VREF SERIES 2.5V SOT23-3
Available Quantity0
Unit Price0
IC VREF SERIES 5V SOT23-3
Available Quantity0
Unit Price0